

AsiaBSDCon 2008
Proceedings

March 27-30, 2008
Tokyo, Japan

Copyright c© 2008 AsiaBSDCon 2008. All rights reserved.
Unauthorized republication is prohibited.

Published in Japan, March 2008

In Memory of Jun-ichiro “itojun” Hagino

Our friend and colleague Jun-ichiro “itojun” Hagino (a BSD hacker famous for IPv6 implemen-
tation, and CTO of ipv6samurais.com) was working as a member of our program committee,
but he passed away on October 29th 2007. Itojun was a valued member of the BSD community
both for his technical and personal contributions to various projects over his career. We who are
working on AsiaBSDCon would like to express our condolences to Itojun’s family and friends
and also to dedicate this year’s conference to his memory.

INDEX

P1A: PC-BSD: FreeBSD on the Desktop 001
Matt Olander (iXsystems)

P1B: Tracking FreeBSD in a Commercial Setting 027
M. Warner Losh (Cisco Systems, Inc.)

P3A: Gaols: Implementing Jails Under the kauth Framework 033
Christoph Badura (The NetBSD Foundation)

P3B: BSD implementations of XCAST6 041
Yuji IMAI, Takahiro KUROSAWA, Koichi SUZUKI, Eiichi MURAMOTO, Katsuomi
HAMAJIMA, Hajimu UMEMOTO, and Nobuo KAWAGUTI (XCAST fan club, Japan)

P4A: Using FreeBSD to Promote Open Source Development Methods 049
Brooks Davis, Michael AuYeung, and Mark Thomas (The Aerospace Corporation)

P4B: Send and Receive of File System Protocols: Userspace Approach With puffs 055
Antti Kantee (Helsinki University of Technology, Finland)

P5A: Logical Resource Isolation in the NetBSD Kernel 071
Kristaps Džonsons (Centre for Parallel Computing, Swedish Royal Institute of Technology)

P5B: GEOM—in Infrastructure We Trust 081
Pawel Jakub Dawidek (The FreeBSD Project)

P6A: A Portable iSCSI Initiator 093
Alistair Crooks (The NetBSD Foundation)

P8A: OpenBSD Network Stack Internals 109
Claudio Jeker (The OpenBSD Project)

P8B: Reducing Lock Contention in a Multi-Core System 115
Randall Stewart (Cisco Systems, Inc.)

P9A: Sleeping Beauty—NetBSD on Modern Laptops 127
Jörg Sonnenberger and Jared D. McNeill (The NetBSD Foundation)

P9B: A Brief History of the BSD Fast Filesystem —
Marshall Kirk McKusick, PhD

FreeBSD on the
Desktop

Who am I?

1

Matt Olander
Walnut Creek CD-ROM

BSDi
iXsystems

FreeBSD Marketing Team
PC-BSD Project Management

2

Why?

3

What is PC-BSD?

What is PC-BSD?

4

It is FreeBSD (with hugs!)
*Graphical Installer
* Integrated KDE

* Xorg Config
* Wireless tool

* Other useful GUI tools

*PBI - Installation Method
Push Button Installer

Self-Contained Package Management
Freedom from Dependencies

5

Target Market
Windows Users

Linux Users
Lazy FreeBSD users :)

PC-BSD 1.5
* Xorg 7.3
* KDE 3.5.8
* FreeBSD 6.3 Release
* NEW System Updater tool
* Improvements to WiFi tool
* Improvements to the PBI Removal tool
* NEW sound detection program! Uses
XML backend to identify and load modules
* NEW amd64 build of 1.56

Installation

Booting CD

7

Install or Upgrade

License

8

Drive Selection

User Accounts

9

Partitioning

Components

10

Final Install

Completion

11

After Install

X Window Config

12

X Window Config

Splash Screen

13

System Updates

PBI Updates

14

Update Manager

PBI Update

15

Upgrading PBI

Updating PBI

16

Finished Upgrade

Installing a PBI

17

PBI Dir

Searching PBIs

18

Installing GIMP

Installing GIMP

19

Installing GIMP

Installing GIMP

20

Installing GIMP

Installing GIMP

21

Removing a PBI

Remove PBIs

22

Confirm Removal

PC-BSD Useful Tools

23

PC-BSD Toolset
* X Windows Config GUI
* WiFi GUI Config Utility
* User manager
* Add/Remove PBIs
* Simple Firewall (pf) manager

How Can I Help?
* Download, test, and bug report!
* Documentation
* PBI Creation and maintenance
* C/Qt/Shell programming
* Evangelize!

24

Questions?

25

26

Tracking FreeBSD in a Commercial Setting

M. Warner Losh
Cisco Systems

Broomfield, CO
imp@freebsd.org

Abstract

The FreeBSD project publishes two lines of source code:
current and stable. All changes must first be committed
to current and then are merged into stable. Commer-
cial organizations wishing to use FreeBSD in their prod-
ucts must be aware of this policy. Four different strate-
gies have developed for tracking FreeBSD over time. A
company can choose to run only unmodified release ver-
sions of FreeBSD. A company may choose to import
FreeBSD’s sources once and then never merge newer
versions. A company can choose to import each new
stable branch as it is created, adding its own changes
to that branch, as well as integrating new versions from
FreeBSD from time to time. A company can track
FreeBSD’s current branch, adding to it their changes
as well as newer FreeBSD changes. Which method a
company chooses depends on the needs of the com-
pany. These methods are explored in detail, and their
advantages and disadvantages are discussed. Tracking
FreeBSD’s ports and packages is not discussed.

1 Problem Statement

Companies building products based upon FreeBSD have
many choices in how to use the projects sources and
binaries. The choices range from using unmodified
binaries from FreeBSD’s releases, to tracking modify
FreeBSD heavily and tracking FreeBSD’s evolution in
a merged tree. Some companies may only need to main-
tain a stable version of FreeBSD with more bug fixes
or customizations than the FreeBSD project wishes to
place in that branch. Some companies also wish to
contribute some subset of their changes back to the
FreeBSD project.

FreeBSD provides an excellent base technology with
which to base products. It is a proven leader in per-
formance, reliability and scalability. The technology

also offers a very business friendly license that allows
companies to pick and choose which changes they wish
to contribute to the community rather than forcing all
changes to be contributed back, or attaching other unde-
sirable license conditions to the code.

However, the FreeBSD project does not focus on inte-
gration of its technology into customized commercial
products. Instead, the project focuses on producing a
good, reliable, fast and scalable operating system and
associated packages. The project maintains two lines of
development. A current branch, where the main devel-
opment of the project takes place, and a stable branch
which is managed for stability and reliability. While the
project maintains documentation on the system, includ-
ing its development model, relatively little guidance has
been given to companies in how to integrate FreeBSD
into their products with a minimum of trouble.

Developing a sensible strategy to deal with both these
portions of FreeBSD requires careful planning and anal-
ysis. FreeBSD’s lack of guidelines to companies leaves
it up to them to develop a strategy. FreeBSD’s devel-
opment model differs from some of the other Free and
Open Source projects. People familiar with those sys-
tems often discover that methods that were well suited
to them may not work as well with FreeBSD’s develop-
ment model. These two issues cause many companies
to make poor decisions without understanding the prob-
lems that lie in their future.

Very little formal guidance exists for companies wishing
to integrate FreeBSD into their products. Some email
threads can be located via a Google search that could
help companies, but many of them are full of contradic-
tory information, and it is very disorganized. While the
information about the FreeBSD development process is
in the FreeBSD handbook, the implications of that pro-
cess for companies integrating FreeBSD into their prod-
ucts are not discussed.

27

2 FreeBSD Branching

The FreeBSD development model strikes a balance be-
tween the needs of the developers and the needs of its
users. Developers prefer to have one set of sources that
they can change arbitrarily and not have to worry about
the consequences. Users prefer to have a stable system
that is compatible with the prior systems. These two
desires are incompatible and can cause friction between
developers and users.

FreeBSD answers the need of both groups by providing
two versions of its code. The project maintains a main
line for its developers, called “current.” This branch con-
tains all the latest code, but all that code might not be
ready for end users. All changes to FreeBSD are re-
quired to be first committed to the current branch. The
quality of the current branch varies from extremely sta-
ble to almost unusable over time. The developers try to
keep it towards the stable end of the spectrum, but mis-
takes happen.

To provide a stable system users can use, FreeBSD also
maintains a stable version of the OS. Every few years
the current version is branched and that branch becomes
the new stable version. This branch is called either
“stable” or “RELENG X” where X is the major ver-
sion number for that branch. Stable branches are well
tested before they are released. Once released, only well
tested patches from the current branch are allowed to be
merged into the branch. Once a stable branch is cre-
ated, its ABI and API are never changed in an incom-
patible manner, which allows users to upgrade to newer
releases that are made from the stable branch with rel-
ative ease. Stable branches tend to have a lifetime of
about 2-6 years.

An even more stable version of FreeBSD is available
than the stable branch. For each release made off a sta-
ble branch, a release branch is also created. The only
changes that go into these release branches are secu-
rity fixes and extremely important bug fixes. These are
designed for users that wish to run a specific release,
but still have high priority bugs fixed and available in a
timely fashion. Since release branches are targeted only
at end users and have so few changes, the rest of this
paper will treat them as a release.

Figure 3 tries to show the relationships between the dif-
ferent branches over time. It shows what should have
theoretically happened if FreeBSD had a major release
every two years. The horizontal axis is time (in years).
The vertical axis is the amount of change, in arbitrary

units. Vertical arrows point to the theoretical release
points (with the release number under the arrow when
the name fits). After about three years, the branches stop
being used in favor of newer releases.

Figure 4 shows data from the FreeBSD project since
early 1997.1 There are many features of this graph that
differ from the idealized graph. The two that are most
relevant are that major branches live beyond the three
year idealized vision and that the timing of the release
branches isn’t completely regular. These points will be
important later in deciding which method fits the com-
pany’s needs the best.

The FreeBSD ports system (which is used to gener-
ate the packages that appear in FreeBSD’s releases) is
not branched at all. Instead, it supports both the cur-
rent branch, as well as the active stable branches of the
project. For each release, the tree is tagged so that it can
be reproduced in the future if necessary. These policies
are different than the main source tree. Tracking of the
ports tree is not addressed further in this paper because
its model is different and the author has fewer examples
from which to draw advise and conclusions from.

3 Branching Choices

There are a wide range of companies using FreeBSD in
their products today. On the simplest end, companies
load FreeBSD onto boxes that they ship. On the most
complex end, companies modify FreeBSD extensively
to make it fit their needs. Over the years four different
approaches to tracking FreeBSD have evolved.

The simplest method involves using the stock FreeBSD
releases unmodified. Companies doing this grab
FreeBSD at its release points and make no changes to
the software and just configure th system and install the
packages that their customers need. Typically no sources
are tracked and only binary packages from FreeBSD’s
web pages are used.

The next simplest method involves grabbing a release
of FreeBSD and using that as a basis for their product.
FreeBSD is effectively forked at this point as the com-
pany makes whatever modifications are necessary for
their product. No thought is given to upgrades or con-
tributing bug fixes back into the community.

1The author used fairly simple scripts to extract this data from the
commit logs, whose format changed in 1997. Some flaws exist in the
data, but they do not affect the shape of the graph.

28

Companies often setup repositories of FreeBSD stable
branches. In this model, the tip of a stable branch (or
the latest release point) is imported into some SCM. The
company will then make fixes and improvements to its
private branch. The company will import newer versions
of FreeBSD on this stable branch from time to time. Bet-
ter run companies will try to contribute their fixes back
into FreeBSD to simplify their upgrade path.

The most complicated method involves mirroring the
FreeBSD development process. The company will im-
port the latest version of the FreeBSD development
branch. They will setup automated scripts for pulling
in newer versions. They will make their changes to
FreeBSD in this mainline of development. Rather than
using FreeBSD’s stable branches, the company will de-
cide when and where to branch its version. Once
branched, it will control what fixes are merged into its
branch.

3.1 Stock FreeBSD

The most widespread use of FreeBSD involves this
method. In this method, the company grabs the binaries
from a FreeBSD web site or commercial vendor and uses
them as built. They layer packages on top of FreeBSD,
typically a mix of stock packages from the release and
their own additional scripts or programs. The focus of
these companies is to have a system that they can deploy
and use for a particular purpose.

Customization of the system is typically tracked in some
kind of source code management (SCM) system. These
customizations include the /etc/rc.conf file (which
controls most of the global settings for the system), as
well as configuration files and other data used by the
system. Some of these companies will also compile cus-
tomized kernel configurations. These files can typically
be tracked in any SCM as the demands on the SCM are
modest.

These companies typically upgrade only when they need
to do so. Once they find a stable version they stick with
it until they need something from a newer version. This
could be support for newer hardware (drivers or archi-
tectures), or application level features such as threading
support. Often times they will track newer security re-
leases with services such as FreeBSD update and/or por-
tupgrade in package mode.

FreeBSD meets the needs of these companies fairly well.
They don’t require additional features or bug fixes not

in the current releases. They don’t need to optimize
FreeBSD for any given platform beyond what the stan-
dard system tunables provide for them. The main ad-
vantage for these companies is that FreeBSD is a drop
in solution. There’s very little overhead necessary to get
their machines and applications running and FreeBSD’s
standard install tools can be used to create images for
their products (if they even need separate images at all).
Some of these companies participate in the community
and contribute to the community in many ways. Some
of these companies do not. The choice is up to the indi-
vidual company and its needs, sensitivities and desires.

3.2 Grab and Go

Another easy way to use FreeBSD sources is the grab
and go method. In this method, the companies grab
FreeBSD at some version and then never upgrade
FreeBSD. No attempts to track FreeBSD or pull bug
fixes in from FreeBSD are made. The company grabs the
source and starts hacking. They layer in their own build
and packaging system often times. Sometimes they port
to a new architecture. FreeBSD typically is the base for a
more extensive application of appliance which the com-
pany has total control over.

There are a few advantages to this method. The company
can concentrate on making their product work without
the distractions introduced when software versions are
rolled. The company manages its risk by doing ev-
erything themselves. The company can keep any in-
formation about what they are doing from being in-
ferred by competitors looking at their bug submissions to
FreeBSD. The company’s employees are not distracted
by interactions with the FreeBSD community. Without
these distractions, it is believed that this method allows
a company to bring its product to market more quickly.

However, there are many disadvantages to this method.
The biggest problem is that companies using this method
often find it difficult to get support for the community.
Most of the active members in the community have
moved on to newer versions of the software, so are un-
able to help out with problems in older versions. Many
of the bug fixes in newer versions of the software are dif-
ficult to back port because they depend on other changes
to the software that aren’t present in the older versions
of the software. Often times, interaction with the com-
munity on problems for recent releases of the software
can save tremendous amounts of time for the company’s
employees because they can leverage the knowledge of
others who have had similar problems.

29

Companies often times think they are in total control of
the hardware platform, but in reality this is a mistaken
assumption. Hardware platforms are made of up chips
that one buys from manufacturers. These chips go ob-
solete at an alarming rate sometimes, forcing changes
to the underlying hardware to even be able to continue
to build it. These new chips often times require new
changes to the software. Just as often, others in the com-
munity have used the newer parts and have migrated the
necessary changes into FreeBSD. So often times com-
panies that go down this path are forced to redo work
that has already been done in the community when their
supplies tell them that they will no longer be able to give
them a certain chip, and no replacements from other ven-
dors exist.

Some companies have managed to start out with this
method and later transition to one of the other methods
described in this paper. One is even rumored to have
recently completed the jump from FreeBSD 2.1.6 (re-
leased in 1996) to FreeBSD 6.2 and are now using the
stable branch tracking method described below. Other
times, the outcome isn’t so good and the product is mi-
grated to another system, or the product is killed.

3.3 Stable Branch Tracking

One nice feature of FreeBSD’s stable branches is their
stability. One can typically count on them to build and
not have critical problems. The stable branch tracking
strategy takes advantage of this feature.

The first major release on a branch is imported into
a private SCM for the company to use. The sources
are imported using the ’vendor branch’ facility of the
SCM. This facility allows one to keep a pristine copy
of the sources from FreeBSD separate from the mod-
ified sources for the company. This separation allows
developers to produce patches between the two. These
patches can be used to determine which changes should
be contributed back to the FreeBSD tree. In addition,
by importing into a vendor branch and merging into
the company’s private branch, the company can upgrade
versions of FreeBSD at any time. They can pull either
a whole new FreeBSD tree, or individual files that have
the fixes they need. The company can choose when to
roll forward the basis of their tree, and the branching
features of most SCMs make this procedure relatively
easy. As new stable branches of FreeBSD become avail-
able, this process can be repeated for them in a separate
module or directory in the SCM.

The big advantage to this approach is the underlying na-
ture of the stable branch itself. The FreeBSD project
has policies and practices that ensure that the branch
will be stable, especially near releases off of that branch.
The ability to “cherry pick” fixes from newer versions of
FreeBSD without affecting the rest of the branch helps
to mitigate risks associated with upgrading. In addition,
by using the vendor branch feature, these changes will
not interfere with future imports of a more complete sys-
tem when it is appropriate to do so. Since the ABI and
API are also frozen for the entire branch, one can grab
fixes and changes from newer versions without worrying
about breaking applications under development within
the company. The isolation of major releases into sepa-
rate modules in the SCM allows a company that has sev-
eral products built on FreeBSD to selectively upgrade
them to newer versions as market conditions warrant.

There are a few disadvantages for this approach. First, to
fully leverage the FreeBSD community, it is desirable to
push back bug fixes to the community in a timely fash-
ion. When this isn’t done, as is often the case when dead-
lines are tight, the chore up upgrading increases because
one must bring forward all of the changes to the system.
Second, if the company makes extensive changes that
aren’t merged back into FreeBSD and want to migrate
to the next major version, they will need to redo their
changes after the next major branch is created. If they
are in an area of FreeBSD that has changed between the
two branches, this can take quite a bit of time and effort.

�

COMPANY 6� � �

RELENG 6�
6.0

�
6.1

�
6.2

Figure 1: Code Flow between FreeBSD RELENG 6 and
Company’s Version

Figure 1 shows this graphically. This figure shows an
idealized flow of patches into the company tree and back
to FreeBSD. It also neglects to picture the required trip
through FreeBSD current required for all patches to be
committed to stable branches. The number of changes to
the branches are also abstracted out, unlike Figure 1 and
2 presented above. The arrows pointing to the RELENG
branch represent FreeBSD releases from that branch.
The arrows from the RELENG branch to the COM-
PANY branch represent merges of code from FreeBSD
into the company’s repository. The arrows from COM-
PANY to RELENG represent patches that have success-
fully been contributed back into FreeBSD and have been
merged into FreeBSD’s RELENG tree.

30

3.4 Own Branching

One way to keep current in FreeBSD is to track
FreeBSD’s main development branched called “cur-
rent.” Many developers do this in the FreeBSD per-
force tree and it works well for them. This method fol-
lows that practice, but also adds stable branches, akin to
FreeBSD’s stable branches in concept, but not tracking
any specific FreeBSD release.

The company would import FreeBSD’s current code
as its starting point for its FreeBSD development ef-
forts. They would start making changes to their current
branch. In addition, source code pulls from FreeBSD’s
current branch would be frequent to keep the company’s
current branch close to FreeBSD’s current branch. Just
after these pulls, the company’s current branch would
be exactly FreeBSD’s current branch with only the com-
pany’s changes layered on. The company would then
merge the relevant change from its current tree into
FreeBSD’s current tree by working with the FreeBSD
community to produce acceptable patches.

The company would also emulate FreeBSD’s branching
practices. When the tree is in a good state to branch, pos-
sibly driven by delivery schedules for its end products,
the company would branch its own stable branch from
their current branch. They would merge bug fixes and
new features from their current branch into this stable
branch and build products from this stable branch.

The main advantage of this approach is that it is eas-
ier to keep current with FreeBSD than the stable branch
tracking approach. To generate patches, a simple diff(3)
between the FreeBSD sources and the company sources
will generate the patches. As patches are merged with
FreeBSD, the next pull will automatically include those
changes and the delta between the company’s sources
and FreeBSD’s will drop. By controlling the branch-
ing times, there’s no need to wait for FreeBSD to cre-
ate new a stable branch, so the company can drive re-
leased schedules more easily than companies tracking
stable branches.

The main disadvantage of this approach is that the
company loses the work done by the FreeBSD com-
munity to keep its stable branches stable and useful.
Since there is no connection between the company’s
stable tree and FreeBSD’s stable tree, improvements to
FreeBSD’s stable branch aren’t automatically reflected
in the company’s stable branch. An engineer will need
to watch changes going into either the current branch
from FreeBSD, or into FreeBSD’s stable tree and man-

ually pull them into their own stable branch. Typically,
there are on the order of 100-200 commits to a FreeBSD
stable branch a month, so this load can be quite large. In
addition, except around the time a new branch is cut in
FreeBSD, FreeBSD’s current branch may have periods
of instability and it can be quite difficult to know when a
good time to branch might be as many of the stability or
quality problems that are in FreeBSD’s current branch
often lay undiscovered for months or years because it
doesn’t get the intensity of testing that a FreeBSD stable
branch receives.

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
���

FreeBSD Current

Company Current

Company Stable

Figure 2: Relationship between FreeBSD current and
company branches

Figure 2 shows this graphically. This figure shows an
idealized flow of patches into the company tree and
back to FreeBSD. The two parallel current branches
are shown diagonally, with the company’s custom sta-
ble branch shown horizontally, much like Figures 1 and
2 presented above. No FreeBSD release points are in-
cluded, since they are largely irrelevant to the method.
The exact delta between the two current branches is also
abstracted out, as this will ebb and flow over time and
needlessly complicates the graph. The arrows represent
changes being merged from one branch to another, ei-
ther between the two current branches, or from the com-
pany’s current branch to its stable branch.

4 Acknowledgments

I would like to thank the crew at Timing Solutions: Ben
Mesander, John Hein, Patrick Schweiger, Steve Passe,
Marc Butler, Matthew Phillips, and Barb Dean for their
insight and implementation of the ’Stable Branch Track-
ing’ method described in this paper. We deployed it
across 4 major versions of FreeBSD.

I would like to thank Julian Elischer for the many con-
versations that we have had about development method.
He provided much of the input into the ’Own Branching’
section.

31

 0

 20000

 40000

 60000

 80000

 100000

 1998 2000 2002 2004 2006 2008

Idealized 2 year release cycle

RELENG_3

RELENG_4

RELENG_5

RELENG_6

RELENG_7

HEAD

3.0 3.5 End of life

4.0 4.5 End of life

5.0 5.5 End of life

6.0 6.5 End of life

7.0

Figure 3: Idealized branching model

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1998 2000 2002 2004 2006 2008

Cumulative Commits For FreeBSD Branches

RELENG_3

RELENG_4

RELENG_5

RELENG_6

RELENG_7
HEAD

3.0
3.2 3.4 3.5.1 < 1 commit/yr< 50 commit/yr

4.0
4.2

4.4
4.6 4.7 4.8 4.9 4.10 4.11 < 50 commit/yr

5.0Perforce
adoption

5.1

5.2 5.3 5.4 5.5 < 100 commit/yr

6.0 6.1 6.2 6.3

7.0

Figure 4: Actual FreeBSD branching history

32

�����

��	�
�
��
�����
������
����
�����������
����

�������	�
��
���

���
������
����
�����

��
������
����

��������

���������
����
��������
	�� �
��
�
�����!"�����
���#
��
 �������$�����
��
�����������
������
��
���
����

�����#%
��
	�� �����

�����#
�����%
��
���"��&
���������
��

���
�������
��
���
��

���������
"���

	��������
��
�����
�����
���
���
�#	������

	���������

������
'�(
�����
���

�
�����!���#
�#	��#��������
��
)		����
&����*+,
���#�"��&�

����

���#�"��&
��	�����
���
�	��!��
�

����&�
���
�		��	�����
	�� �����
"���
����
��
�$�

�����
���

�������$�����
��
�	������
���#�����

��������

����
����"���
����!������

�������
� ��
"����
�������

���
����"�

��

"����
���

����
�

���
&����*+,
���#�"��&
����
	�� �
��
�
#�������#�
��

���#������
�

��

��#� �
��������
#�
����
����
��&�
	���
��
���
�������$�����
	������
��

���
�����

���

������
���� �����

����
	�	��
�-	�����
���
�#	��#��������
��
�������
�����
�����
��
��
���
������
&����*+,

���#�"��&�

.���!��&�
�������������
"��
������
�������
��
��
����
������ ���
��#	��
��
�#	��#���
��

��

���
��#�
��#�
��������
���
��#���
��
���
���#�"��&
�������
��
���
���

��
���
����
������

/����"�
010���
����"�
0

��������
���
����
��
#�
���
���"��&
�

������
��
���
�������
�� ����#����

����
	�	��
	�������
"��&
��
	��������

�� �����	
�����

��

������
��

�������
'�(
�����
���

�
�����!"�����
 �������$�����
��������
�����

�����
23)4)5(((6�

���
��������

����
�
��
���
������
�����	�
��

�-���
�
��
��
�#	�����
�

�������
������������
��
���
��������	
�

	��������7

� ����
�����#
������7

.����

	��������
���
�������

��

�� �
������
��
���
�����
����"
���
������
	����
�����

� ���"��&
������7

8������
��
�
����
���
����"�

��
���

���&���
��
�
������
�	������

9	 '

�

����
�����

� :��������

����
������7

8�� �����

�����#
�����
����
"���

������
���
����
�����#
��
�����

�����
���
�����

���

� :��������

 ���������
��
���������
�����
�
	�����7

.����

	��������
������
���
	��������
��

���&���
����
���
��

��������
������

.����

����
	�� �
�
����
 �������$�����
�������
����

�
���
��������
�����
��
���������
��&�
�8;%

#�#���%
91<
��

���"��&
���
"�
���

33

.����
	��
���
���
�������
=)�
&�����
���#�"��&
"����
	�� �
��
����!������

�������
� ��
��

�������$�����
���
	�� �����

��������

9������������%
���
����
��������
"��
���
��!�#	��#����

��
�
=)�

#�
���%
��������
��
����
��#�
��
���
��� ����
��
���
=)�
���#�"��&%
"���
����
��
��#	���

����
����

�����#�

)���%
���
=)�
�����#
���
�	�����
&��"��
��
��
����
�����#�

��
�����������
����

���
&����*+,
���#�"��&
"��
�����
���

��
)		��
��
=��
<�
>
?(�'
�����
2��5?5@6�

A��

A����

	�� �
�

�
�����!���#
�#	��#��������
��
���
���#�"��&
���
������
'�(
2A�:)�5((B6�

<�
���
������
��
�
����
���#�"��&
��	�����
���
�	��!��
�

�����
��
�����*+,
����
����
����&
����
���

��C������
���
�		��	�����
	�� ������
"���
�����
��
�
�������
�������$�����
���#�"��&
��&���
	��#������

���
�	������%
��#�

��������
<�
���
&����*+,
���#�"��&
��
�
���
�������$�����
�������
"���%
���
���

�����
��#�%
�-	�������
���#�����

��

���
�������
�
#�
����%
	��������%
��

�-��������
�����#�

���
�����#
���
��
�-���
�

��
���&���
�

�������
��������
#�
���
����
���
&�����
����
	������	���
��

���
�������$�����
	��������
��

�����������
���#
"���
���
�������$�����
���#�"��&�
��������
#�
���

���
����
��
�

�

��
�����#�
��
���
����
&�����
#�
�����

���
	��	������
��
���
&����*+,
���#�"��&
����#
���
�����"���
��������7

� :�
�����
��
���
������
��
���
�������
	�����
��
��	������
���
#�$�
��
�
�"����
������
�	��!

��
�

�����%
���
��������

��������%
"���
����
��
��
������

/������	����0
��
�
��
����&

�������$�����
���
���
��C�����

�������

� :�
�����
��
���
������
��
���
�������$�����
#�
����
��
���������
���
��##��
��
�
����

�#���%
#�
����%
��

����
��
��
������

#����
��

� 9����
�����
�
#�
����
��

�-��������
���#�"��&
"���
	��������
��������
#�
����

���
����#

��
����
����
����"�
��"
��������
#�
���
��
��
�#	��#����

����
������
��

�-���

���
���
�������

;��-
��������
#�
���

� ���
�������
��
��#	������
��	����
���

������
;��-
��������
#�
��
��
���
�	�������
�����#
"���

��
���������
#�
���

:���
����

������
�������
*:�)�,
��

#��
�����
������
�������
*=)�,
���
���
�����
�-�#	���
����

���
���
�
���
��������
#�
����

D�"� ��%
����
���
��#	��-
��

��������
��
�#	��#����

��
���
��������

&��"��
��%
��
�#	��#��������
���
����
����#	��

��

���
���
���
&����*+,
���#�"��&
��
�������

���
�����
�"�
��������
�� �
����
	�� ��
��#���
�##�
������
��
�#	��#������
&����*+,
��

��� ������

���
&�����
��
���
��"
���#�"��&�

D�"� ��%
�����
��

���
����
�
���
����

��
�#	��#���
�
��"

��������
#�
��
����
�-���
�
���
�-������
;��-
��������
#�
��
��

���
��#������
��"
��
�����"���

����������
��
���

��������
��
���
&����*+,
����������

<��
��
���
�#	������
�������
��
���
�������
��
;��-
��

���
����
����
��
��
�����
�-���#���
��#	����� �
��

���
#��&��
'(
�����
�����
���
�� ������
��
����
���
������������
��

����������
���
��
��������

������

����
���
����
	�������
��
��#���
���#������
���������
��"
�������������
����
���
�����#
����
���

��������

��������
��

���
������	���
�
A���

�#��

	���

 ������
#�#���%
���&���
��

���"��&���%

 ������
����
�����#�%
����

4���
�
��"
��������#
��
�����
���

����
���
&�����
��
��
���������
�#	������
��
�-������
���

��	���������
��

���

���
��
��
�

�
����
��"
��	���������
��
���
�����#
����
���

��������
�� ����

������	���

��
��
��
��
#�����
�
���������
���
��
�-������
��
�
����

������
�	��
���
��"
	�������������

34

����
	�	��
�-	�����
���
�#	��#��������
��
�
�������
����*5,!��&�
��������
#�
��
��
��
���
&����*+,

���#�"��&�

���
����
)89
��
�
	�����������
���

����
����
���
���������
���

�����
��
���
���������

�������
��
�#	����
����
�
��"
������������
��
�

�����
��
���
���
�������
;��-
��������
#�
���
D�"� ��

��#�
��
�����
������������
��C����
���!��� ���
��
�!�������
����
"���
	�������
���
��������
��
���

��������
��
���
&����*+,
����������
���
�-�#	��
#�		���
���
9�)��:E)�F
�

����
��
��
98

�

����
�������

��
���
����
���
�������
���&��
�	���������

� �������
�	

 ��������
��

4���
���
&����*+,
���#�"��&
���
�	��!��
�

�����
��
���
&�����
����
����&
���
����������
	�� �����
���

��	����

"���
�����
��
���
��������
�
����
�������	�
�������
��
�������$�
���
��C������?

���
����#����

��
���
��������
���7

� �
��#�

���	�

� ���
���
�������
��
���
������
��&���
���
�������$�����

� �
��#����
��������
�
���������
���
������
��
���
���	�
��
��
�������$�

� �	
��
'
�����-�
�	������
����#����
�� ���
�������

������
�����
���
��C����

�
����
�������	�
�������

��	������
���
��C����
��
���
���������
����
���
��������
#�
���
���������

��

���
	���������
���	�
�� �
���������

"���
���
���#�"��&�
���
���������
�-�#���
���
��C����
��

������

���
��
3);�DE:A�;G�E)GG<4%
3);�DE:A�;G�E�A�F%
��
3);�DE:A�;G�E�A�A:

��
�������
����
����
�		�� �
���
��C����%

���
��%
��
�� �
��
�	������
9�
��
�����
���
��������

�����
���

��C����%
�
����
�������	�
�������
"���

���
���
�������$������

��	����
���	��
���
���
�����#
���	�%
���
	������
���	�%
���
���"��&
���	�%
��

���
�������
���	��

���
&����*+,
���#�"��&
	�� �
��
�
����
��

"��
���
��������
#�
���
��
������
#�
��!�	������

���
��

���
��������

�����
��
����
�
�	�����
���
�������
���	�
���
#�������
����
��������
#�
��
�	������

���

"���
���
�������
���
��	��

��
����
�

�
!!
�
��
�������

����"�#�!���
����

9�
���
&����*+,
���#�"��&
�

�������
�����-�!
�	��
���
�����#�����
��
�������
	����

��
���

�������$�����
#�
����
��
����"
#�&���

��������
����

��
����
�����#������

)���%
���
&����*+,
���#�"��&
	�� �
��
�
����
��

"��
��
������
�

�������
��������
#�
��
�	������

���
��
��!&�����
���
������
�����������

�����
�"�
��������
���
���
����

��
���
�������
=)�
���#�"��&�

�� ��������������

?)�������
���	�
�	������
"��		��
���������
���
��� ��������

35

$�
����"����
�
��

���
�������

���
���������
���
�����
��
���
	�����
���������
����
�����
�
���
����������
��
�
�����
4���
�

	������
��
�����
�����

�
���������
��
�
�����#
"�
�
	�����
���������
��
�������

��
���
	�������

���
��������

)�

���
	�������
��
�
���������
��
�
	�����
���������
��
���
	������
���
�������
��
������

����
�
	������
��
�����
�

4�
���
�
�����	��

�
���
��
���������
�
	�����
���������
��
���
	������

���
�������
����������
����
��
�����	�����
��
���
�����
�����
��
���
��������
)�
���
���
������
���������

������
������
������

��
�����
������
��
�
��
���
�����#
���
��
��
����#	���
�
9�
�������
���

���
�������
���������
"��
������

��
�

�
����

"���
�
	������
��
���
	�����
����������

9�
������
���
����������
��
�
	�����
���
	����

����
���
&�����
��
���
���#
��
�
����������
	����

���������
��
���
�
�����
�����#
�����
28:<8G9�H6
����
"��

���
��
����"
������
�-������������

9�

	���������%
���
����"���
��
���������
#����	��
���"��&
�

������
"���
�
�����

8�����
����������
���

��
��
���������
������

��

��	���

��
"���
���
����
���
������
���������

�����������
�
	�����
��
��
������
��
����
�����������%
���
&����*+,
���#�"��&
	�� �
��
�
����

��������������
���
����
����
	��	����

���
����
��������
#�
��
���������
�
��������
���
���
���
�������

���	�
��

��
����������
�������

"���� ��
�
���
������
���������
��
��������$�
%
��	��
%
����
%
��
���

�����������
	������
���&��

���
��	���
��

���&�
���
	�������
���������
�����
��
��������
%
��

���
�����

���
���������
�����
��

�������
%
����#��������

��	�����
��
���
	�����
���������
"���
���
���������

�����
�������
$����

��
�%�	
�
!
���&��
��#����

���
�����#
����
���������
��������
��
���
�"�
�����#
�����
��
����
��

�
���
��
����
"����
���
�������

#�
���

�����
���
�������
�����#
�����
�
�����
��

�
���
��
������

���

���������
��
����
�
������

��&��
�
����������
	����

���������
������

��
�
����
���������
��
����#����
4�
�����

��������
��#��
���

���
�����#
�����
��
#�&�
��
�� ����
"����
���������
 ������
��
���
�

���
&�����
��
�
��
���
�#	��#��������
��
��������
��#����
���"���
������
��

��������

�����
���

#����

����������
��
��������
&�����
����������
����
���

��
��
��&��
����
��������

���
�������

���������
��
����
���
�
�����
���
����������

���������
����������
���
����
����#����
���
�

��
��
���������

����
���
&������
���
��#�
�������
������
���
����������
���������
	�� �
��

����
��
�$�

#����
�
��
	���
����������
�������
��
��

���
��
���
&�����
"���
��������
�����#
�����%
���

�����
��
��
��		���
���
	������
����������
�������
��
�����%
#���
�������
�����#
������
����
��
������

��-�

"���
�
���
��
��#���
��� ���
������������

������
'
���(
)�
����%���
���
*
���+�
�

)�
#�������

��
���
�������
�����
	�	��
23)4)5(((6
���
�������
��

��
���������
���

���
&�����

������
��
�
��

�
������
���
���
	�����
"����
	�� ������
"����
����&�

��

#�
���
�����
	�����
��

#�&�
���#
�"���
��
������

4���
���
�����
������
��
���
&����*+,
���#�"��&
#���
��
����
"��

���
�����
�
��
���
������
&������

�����
"���
����
�
���
���
��
	�����
����
����
���

��
��
#�
�
����!�"���
���
��

��
������	��
���

&����*+,
����&��
�����
���

�������

������

)������$�����

��������
���
#�
�
��
��!�����

���������
���
�	������
���	���

���
���������
���
���
����

36

��������
#�
��
�� �
�
��##��
��
�
	������7

� 9�
���
���
�������

�
���
�� �
�
���������
��
�
	�����%
����
	���
���

�������
��
���������

3);�DE:A�;G�E�A�A:�

� <����"���
���

������
������
 ����
��
���
��
3);�DE:A�;G�E�A�F%

��
�������
����
���

��C�����

������
�����

��

����
%
��
��
�		��	�����

���
#���
��
���
��������

� ����
��
� �
���
�������
����
���
���
��"���

����

���
�-�#���

��

�����
��

���
������

 ����
��
���
��
3);�DE:A�;G�E)GG<4%
��
�		��	������

int
secmodel_gaol_system_listener(kauth_cred_t cred, kauth_action_t action,
 void *cookie, void *arg0, void *arg1, void *arg2, void *arg3)
{

int result;

/* if not in jail, defer */
if (gaoled(cred) == NULL)

return (KAUTH_RESULT_DEFER);

result = KAUTH_RESULT_DENY;

switch (action) {
case KAUTH_SYSTEM_ACCOUNTING:
...
default:

break;
}

return (result);
}

����
�� ���
���
� ��"���#���
#�������
��
���
��C�����
�������
"�

���
#���
��
���#
���
�#	������

	���������

������
'
���(
)�
����%���
�,��&�+�
�

���
��-�
�����
��
�������$�����
��C�����
���
���
����
����
���
����"�

�����
���������
���
�#	������

	��������7
����
����������
����
���
���
��

��
���
���
�"����
�����#���
��
���
��������
��������
��

���

���
������
 ����
��
3);�DE:A�;G�E�A�A:�

...
case KAUTH_SYSTEM_CHROOT:

result = KAUTH_RESULT_DEFER;
break;

...

�����
��
����
�
�����
��
	�� �����

�������
����
���
����"�

����
�
�����

�	��
���
��
���
�������
��
�

������
 �������7
����
��������
���
�����#
����
������

����
���
���
��

��
���
��
�
��
���
��������

���������
��#����
��
���
�����
���������
����"�

����
��
�������
���
������
 ����
��

3);�DE:A�;G�E�A�A:
"���
�		��	������

...
KAUTH_SYSTEM_CHSYSFLAGS:

if (gaol_chflags_allowed)
result = KAUTH_RESULT_DEFER;

break;

37

...

���
��-�
�����
��
�������$�����
�������
���
���
����
����
��C����
������
����&�
��
	�����
����������%
����

���
����
����
������
����
	��������
���#
���
	�����
�����
���
��
���������
"���
	��������
��
�

��������

	�����
��
����
����
���
���
�#	������
�

���
������	
��
�������
�	�����

���������������
���� !���"#�!!������������$%��&'%()�
���"%*
+��� *

���

���
#���
��#	������

��
�����
����&�
��
���
����&

���
�	��
�	�����
�
���&��
����
���������
��"

���&���
��
8�EG<�)G%
8�E9�A�%
��

8�E:<;�A
	�������
��#������

D�"� ��%
���
���
��C����

�����#�����
"��
�����
�
	����

��
���
���	�
��������
��

���
�#	��#��������
��
��������
���"��
�

������
'��
���(
)�
����%���
����
�
��
���+�
�

����
���
�#	��#������
���
����
��������
#�
��
"��
��#���
��������
�����

��"%
"�
��#�
��
���
#���

�����������
	����
����
���
���
��
����
��
�#	��#����

9#	��#������
�����
����&�
��C�����
�-��������
 ������
�������
��
���
&����*+,
���#�"��&
��
��
#�
��

��"
�������$�����
�������
��

���!��C�����
���

��
��

�����
�

�������
��
����
���
���#�

��������

���
�������$�����
�������
��

���!��C�����
��
���
�������

���	��
���

��
��
�-���
�

"���
��"
��
��

���
���
��"
��������

����
�������
���
������
���������
��
���
&����*+,
3�9�
���������
��
���
�
��
��
���������
����
�����
�

)��
�-������
��������
#�
���
���

��
��
���������
����&�

"������
����
���

��
��
#�
�
�"���
��
���

��"
�������$�����
��������

��	������%
��
�����
���

������
��
''
��������
#�
��
���
�
��
����"
�����

��C������

;������������
���
&����*+,
���#�"��&
���
���������
��
#����
��
����&
����
�
�� ��
��������
#�
��
��

�	!��!
���
"���
���
���

�����

�������$�����
��������

����
��
��
	�������
��
����
���

��
����#	������

��������
#�
��
��
��
G3=�

�"�
��"
�������
���
�

��
��

�����

��
���
�����#
���	��

<��
�������$��
���
���
��
�����#
I
98�

�����#
������

4������
��C�����
���

����

��

������

�	��
�
��
�
������
 �������
����
��������
���

���� ����
���
���
������

���
�����
�������$��
���
���
��
���
C�������*5,
�����#
����
��

��

����

���

�#	������

	���������

����
��

��������
���#
��C������
��	��
����
	�� �����
���
�������
C����

�	���������

���
	��������
���	�
"��
�-���
�

"���
��
�������$�����
������
��

����#���
"������
���
�������

	������
���
"���*5,
���
�
��#�

	���������
���
��C����
��

����

��
���
��#�

	������
��
�����
�
���

	�����
��
���
��C�������
	���������

���
���"��&
���	�
"��
�-���
�

"���
�
��C����
��
����&
"������
�
�� ��
���
������
���
��
��
����"�

��
���
�
	���������
���������
�

�����

9#	������

	��������
���
����
���
���������
�

������
����
���

�	������

"���
���
	�����
��
������
�

4���
��
�#	������

	������
���
�
�
���&��
��
�
�����
�

����
��

"���
�����
��"
���&���%
"����
��

�	��������
����"�
%
���
&�����
���
�
��
����&
����
���
�����
�

����
�	������

��
�#��

�

��
���

	��&���
��
��
���
����
��
����"�

�����
���"��&
�

������
���
���
	������

����
��
�#	��#����

��
�

38

��������
���"��

#�����
"���
���
��"
3);�DE�A�4<:3E)��:E�)��AA
������
��
���
���"��&

���	��

�������
�����
��"
��C�����
���
"���
"���
���
&����
�����
#�
��
���
���������
�������
���
��������

���"��
�

<�
���
�������
�����
����
��

��
�
���
���
����&�
��
�

�
�

���
���������
��
���
�����#��

������
���	�
�� �
��
��
#�
����

��
�����
���������
����"
�����
��C������

)��
�����
��������
#�
���

�� �
��
��
���������
����&�

��
����
���

�	
�����
��
����
�����
��C�����
���
���
�����������

����
�

4���
��#����
���
�
���	��
��
�	�����
�����
����
��
�����
������

����
���#
��
���
"���
����
���
&����

#�
���

����
���
���
������

��
��	������
�������
���"��&
�

������
"���
��
�

����
���#
���
����
��

�����
���"��&
�

������
	��#����

��
���
	������

���
�����
����
��
��
���
�������
���&��
��
�
"����
���������
�

������
���
�������

��
�������
�

�������
�������
����
���
	�������
98
�

����
���
�#	������

	���������

9#	��#������
����
"���
���

&����*+,
���#�"��&
��C�����
��

� ����
���#
���
	�����
#�
��
��
����
���������
�
��1��!��
���	����

���#
�
��C����
��
�������$�
��
�������

�� ��
�������
����
�����
��
#�����
�������
��
���
"��
��

����

"���
��
�����%
"�
�-���

���
��#������
��
�
����
�������	�
�������
��
���
����
��

3);�DE�A�4<:3E9�)��:
��
����
/����"0
#����7
/���
���
���������
�

����
��
���
���#����

"���
0�

9�
���
/
���0
����%
��
���������
�

����
����
��
��
��
���

������

��
���
��������
���������

�

����
��
	����

���&
��
���
�������
����
�������
���
��
���
�	������
	���#�����
��

�
����
�������	�
��������

��#������%
"���
��
�#	������

	������
��C�����
��
���

�
���&��
��
���
���	������

��
���	���&

�

����
��
�����
��
�������
��
���
���	���&
�

����%
���
����
��
�
���
�
��
��-
�	
���
�

����
"���
��

�

����
���#
���
����
��
�����
���"��&
�

������
	��#����

��
���
�����

����
��

���
�������
���

3);�DE�A�4<:3EG<�)G)��:
�������$�����
�������

���
������
 ����
��
������

��
��
������

�����

9�����

���
������
��#	��
��-��
�	
���
���&��
�

����
����
��
	����

��
��
���
��
���
	���#������

���
����
����
��
���
���
	��&���
�������
�
��"
���&���

)����%
���
&�����
���
�
��
��-
�	
���
������

�

����
��
��������
	��&���
"���
��
�

����
���#
���
����
��
����"�

�����
�

������
���
���
	������

����
��
����#	�����

��
�������
��"��
�����
���

�������$�����
������
��
���
���"��&
���	�
����

�������
�
��������
�����
�

����
�������
���
��
���
	���#�����
��
�
����
�������	�
��������

�� �����������

�������
�����
��#��
���
 ���������
��
���&���
����
������
��

��������
������

����
���
���
���
����

�#	��#����
�

A#�������
���
�������
����
��		����	���
��
���
&����*+,
���#�"��&
��
����
�������

��� ���
 ������
��
���
3);�DE>>>E�)��AA
��������
���
��
��C�����
�������
��
���
&�����

��������������
��
������
����
���
�������
��
���&����

���
��
��#�
�����������
����
������
����
���&�

��

����

4���
����
��
�#	��#����

��
����

��
�����

��
���
�������
��������
#�
��
��
�������
 ���������
��

���&���
"���
���
�������
���
���

��������
��
�1��
��

�������
��

�������
�
����!�	������
�������� ��
���
���
����
�#	��#����
�

��������
���
����!�	������
������#�
���#
"�����
���
	�����
���
���
����
�#	��#����
�

�����������
�����
�"�
�������
����
���
&����*+,
���#�"��&
��
�����������
��
�����

���
&����*+,

���#�"��&
��"���
�� �&��
���
���������
���
�
���	��

D�"� ��%
���
��
��
��
"����
����
���
�� �&�

��

���

�����
�

<��
�		�����
#����
��
��
�
�	�
���
������C���
���#
���
���#�
��E� �����
�-�#	���

39

9�
�������
���

�
&�����

���������
��
��##��

��
������
��
������
�����

	��������
"���
���
����

������
�.��

����
���
���
����
�#	��#����
�

���������
	�����
��
������
���
������
������#�
��
���
	��!	������
������
�����

����
���
���
����

�#	��#����

�������

�� �����
�����

9#	��#������
�����
"�����
���
&����*+,
���#�"��&
��
�
	����!��!�����	�
"��
���	��������
�����

D�"� ��
�����
��#���
�
���	��
��
	�����
����
���
���
��������
�������������
9�
	���������
���
��C�����

����
���

��
�������
���
���"��&
�

������
��
���
�������
�����
#�&��
����#	�����
����
��
�����

��������
#�
��

���
���
��#��

4����
����
"��&�
���
<3
��
	�������%
��
��
���
����
��
��
���

�������������
	�������
����������

D�"
����
#����
��
��� �

��
�
	��
������!C������
�#	��#��������

��C�����
�������
��������

9�
��
��������
��
�����
���
��"
�������$�����
���	��%
�������
���
���	�
�
���������
���

���#������

�������
�

)

���
��"
�������$�����
�������
��
������!�	������
���!��C�����%
��"� ��%
���
�
�������

	�������
��

�������
����
�������%
�������
��
�����
�#	��#��������
��
���#��
)���
���
���&
��

&����*+,
)�9
 ���������
#����
���

��

������������

(
!
�
��
�

23)4)5(((6 8���!D������
3�#	
��

:�����
4�����%
.����7
���������
���
�#��	�����
�����

���	711	�&�������
�
&1	���1����5(((!�����	
�

2��5?5@6)		��
��#	����
9���
���������
����
��5?5@
3�����
)������$�����

���	711
� ���	����		�����#1���������1��5((J1��5?5@���#�

2A�:)�5((B6 A��

A���
%
������
��������
A������#����%
A���������
5((B%

���	711"""������
����1K���
1������1������(B�	
�

23);�D+6 &����*+,
#��!	���%
&����
L
&�����
�������$�����
���#�"��&

���	711�����
��"���#1���!���1#��!���M&����NN������!'�(

28:<8G9�H6 	��	���*H,
#��!	���%
	��	���
L
	��	����
���������
������
�������

���	711�����
��"���#1���!���1#��!���M	��	���NN������!'�(

40

BSD implementations of XCAST6

Yuji IMAI, Takahiro KUROSAWA, Koichi SUZUKI, Eiichi MURAMOTO,

Katsuomi HAMAJIMA, Hajimu UMEMOTO, Nobuo KAWAGUTI

XCAST fan club, Japan.

Abstract: XCAST [RFC5058] is a complementary protocol of Multicast. In contrast
with the group address of Multicast, XCAST specifies the destinations by the
list of unicast addresses, explicitly. Multicast is very scalable in terms of
the number of receivers because membership of the group-address destination is
implicitly managed on the intermediate routers and the number of receivers is
potentially infinite. On the other hand XCAST is very scalable with respect to
the number of groups. It is necessary for bi-directional multi-party
communication systems such as tele-presence to deal with the large number of
groups. We implemented XCAST6, the IPv6 version of XCAST, to prove the concept.
Using our implementation, we operate multi-party video conference systems both
on experimental overlay network and on native IPv6 network. In this paper, we
will describe detailed implementation of XCAST6 on FreeBSD and NetBSD. We will
also discuss about simplicity not only of implementation but also of operation.

 1. Introduction

XCAST (eXplicit Multi-Unicast) is a protocol to deliver one datagram for small
number of destinations simultaneously. It is considered as a complementary
mechanism of Multicast. While Multicast is suitable to send a datagram for very
large number of receivers, XCAST is good for delivering a datagram to small
number of receivers, but capable of dealing with the large number of groups.

We implement XCAST6, the IPv6 version of XCAST, on the various flavor of BSDs to
validate usefulness of the protocol. XCAST can be implemented so simply because
the protocol itself is designed simply based on existing unicast mechanism.
Using our implementation, communities can easily operate multi-party conference
systems both on experimental overlay network and on native IPv6 network.

 2. XCAST: eXplicit Multi-Unicast

Ordinary, “Multicast” is a system defined by [STD 5]. An IP Addresses in the
special IP address range, formerly called Class D of IPv4, is assigned as
identifier of the group of hosts or interfaces connected to the Internet.
Potentially, any host can join to and leave from the group any time. The
embership of the groups are maintained on the routers with distributed manner. A
datagram transmitted for the multicast address is relayed and forwarded to all
member of the group, duplicated on the routers.

It is a buried history that in a very early discussion of the Internet
community,Multicast was not for a virtual group address but the list of unicast
addresses [AGUILAR]. In its design, destinations were explicitly embedded in
the option header of the IP datagram. Group address extension was introduced as
an improvement from Aguilar's. The main point of the improvement was a
scalability of the number of receivers. Maximum number of the original Multicast
was limited by the length of IP option header. The Internet community considered
it must be too small. So, they choose to introduce the special addresses for the
destinations. By keeping membership on routers, datagrams can be transmitted for
the special addresses as same as for unicast destination. By this extension
“Multicast” got very good scalability with respect to the number of members per
group, potentially unlimited.

Based on this design choice, “Multicast” deployment was started and difficulties
appeared. One of the points is how to maintain the Multicast routing
information. [RFC2902] Because the membership of group-multicast is dynamic,

41

routing information changes so frequently and looks difficult to be aggregated.
Some insist it is impossible [SOLA]. Recently, it becomes consensus that
scalability of group-multicast with respect to number of groups is not so good.

For some types of multi-party communication, the lack of the scalability of the
number of groups is critical. Multi-party video conference is typical example.
The participants, the source and the destinations of multicast”, are sparsely
distributed over the Internet. The system needs the Multicast routes as many as
the participants. From the viewpoint of network operators, routers must maintain
the multicast routes as many as the transmitters. It is easy and natural to
consider the potential multicast transmitters are over hundred-millions,
according to the number of users of instant messages or softphones like Skype.
Today full routes of the unicast of the Internet exceed 250,000 and IAB
considers it is facing serious scaling problems. [RFC4984] That means we need
other mechanism than Multicast to realize this type of communication.

XCAST is a re-invention of primitive work of Aguilar's [RFC5058]. One of the
improvements from Aguilar's is the way to store the list of destinations. For
IPv4, they are encoded in the newer defined option header and for IPv6, the
routing header. The number of destinations is up to 124 for IPv6 version. For
typical usage of human multi-party communication, this limit would not be
problem because it would be difficult for people to make conversation with more
than 100 people simultaneously.

As XCAST datagram has an explicit list of unicast addresses, routers can
duplicate and forward them using existing unicast routing information without
any other like those of Multicast.

One big problem to deploy XCAST in the existing Internet is how to make XCAST
datagram pass over the non-XCAST routers. For this purpose, XCAST6 prepares the
mechanism called semi-permeable tunnel. The raw XCAST6 datagram starts with IPv6
header with special destination address ALL_XCAST_NODE, the group-multicast
address specially assigned. It indicates that the datagram is XCAST6 one and a
list of destinations is following in the routing header. The semi-permeable
tunnel is encapsulation trick like IP over IP. A semi-permeable XCAST datagram
is covered with an additional IPv6 header and a hop-by-hop options header. In
the outer IPv6 header, a temporal address is embedded in the destination field
that is one of the list of XCAST destinations the datagram has not been reached
yet. The hop-by-hop options header marks the need for XCAST routing process.
With this preamble headers, a semi-permeable datagram looks like an ordinal IPv6
datagram with a unicast destination. So, XCAST6 datagram can travel through the
IPv6 network even that include non-XCAST6 routers. Only when the datagram passes
on the XCAST6 routers, it detects the hop-by-hop options header, then checks the
list of destinations in the routing header and duplicates the datagram if
needed.

 3. Implementation

We implemented XCAST6 on NetBSD and FreeBSD kernels. The set of codes consists
of the following components:

� interface for user processes

� routing header processing

� the xcst network interface

When a user process issues an XCAST6 packet with the sendmsg(2) system call, the
kernel needs to handle the request and send it to the network by processing the
XCAST6 routing header. The packet is forwarded by routers and then reaches a
node with XCAST6 support. The node should parse the packet, process the routing
header, and forward it to the destinations listed in the routing header. If the
list of the destinations contains the address of the node, the packet should be
passed to the upper layer (UDP or ICMPv6).

42

The XCAST6 packets are usually sent in the semi-permeable tunneling format. When
the kernel sends them to the network, it should encapsulate them. Also, it
should be ready to receive the encapsulated packets. The xcst network interface
is used for handling encapsulation.

The following sections describe how those components act on processing XCAST6
packets.

 3.1. Interface for user processes

User processes can send XCAST6 packets by sendmsg(2). With sendmsg(2), IPv6
extension headers are added to the packets using the msg_control field of the
msghdr structure as described in [RFC3542]. On sending XCAST6 packets,
ALL_XCAST6_NODES is specified as the destination address in msg_name (regardless
of whether semi-permeable tunneling is required or not) and the XCAST6 routing
header in msg_control. Here we implemented codes so that the routing header is
not rejected as unknown but is stored and associated with the message for later
processing; we don't process the routing header itself here but simply pass it
to the packet output routine.

On receiving side, user processes can receive XCAST6 packets just the same way
as unicast packets. There is no need to change receiver code of socket
interface. Also, we don't need to change code for joining/leaving multicast
groups since XCAST6 doesn't require keeping track of joining/leaving unlike
group multicast or source specific multicast.

 3.2. Sender side

The ip6_output() function builds IPv6 packets and outputs them to network
interfaces. The XCAST6 routing header associated with the message is also placed
in the packet by the function, but is not processed yet.

At the end of ip6_output(), the function outputs the packet to the link layer
according to the routing table. By routing packets destined for ALL_XCAST6_NODES
to the xcst network interface, we can pick up them there with keeping changes to
the ip6_output() function as few as possible.

The output function of the xcst interface checks whether the packet has a XCAST6
routing header or not. Packets with XCAST6 routing headers are passed to the
routine of XCAST6 routing header processing. Packets that don't have XCAST6
routing headers are dropped.

 3.3. Routing header processing

The XCAST6 routing header contains a destination address list and a bitmap. The
bit in the bitmap indicates whether the packet should be delivered to the
corresponding address or not. The address can be classified from the viewpoint
of reachability as follows:

� unreachable

� assigned to the local node

� directly reachable from the local node (ex. on the same link)

� reachable via routers

As for addresses reachable via routers, there may be addresses that next hop
routers are the same. We should group addresses by the next hop and send a
packet for each group in order to minimize the number of copies of the packet in
the network. For this reason we need to look up the routing table first for all
the addresses that the packet needs to be sent. Once the grouping of the
addresses is done, the packet can be sent for each next hop, normally
encapsulated in the semi-permeable tunneling format. Addresses directly
reachable from the local node are handled as no other addresses shares the same
next hop. If the address list in the routing header contains the address

43

assigned to the local node, the local node is also expected to receive the
packet. Such a packet is passed to the upper protocol layer (UDP or ICMPv6) in
addition to being forwarded to next hops.

 3.4. Forwarding XCAST6 packets

The node that supports XCAST6 should forward the incoming XCAST6 packets sent by
other nodes in addition to sending packets requested by user processes. This
section describes how incoming XCAST6 packets are processed.

The XCAST6 packets are usually encapsulated in the semi-permeable tunneling
format. Packets without encapsulation can easily be detected as the XCAST6
packets because the destination addresses are ALL_XCAST6_NODES. The destination
address of encapsulated packets may not be the local node address, but the hop-
by-hop options header in the packet indicates that each router on the path
should inspect the header deeper. We needed to add the code to process hop-by-
hop options header with the type of XCAST6 and to pass the packet to the
extension headers routines.

Also, packets with encapsulation need to be decapsulated. We implemented the
decapsulation in the xcst interface by using encap_* functions provided by
netinet/ip_encap.c just like gif(4) or gre(4).

The extension headers of the incoming XCAST6 packets are then processed as
normal IPv6 packets. We added the codes where the routing header is handled in
order to pass the packet to the routine of XCAST6 routing header processing. The
same routine that is described on sending the packets is also used here.

 3.5. The xcst network interface

The xcst network interface is a pseudo device that is introduced for picking up
XCAST6 packets. As described above, packets that are going to be sent by the
local node are picked up at the output routine of the xcst interface with
keeping changes to the ip6_output() function as few as possible. Also, the
encapsulated packets is picked up by the xcst interface and then decapsulated.
The xcst interface contributes for localizing the changes to the existing IPv6
implementation and simplify the XCAST6 implementation.

 3.6. ICMPv6 support

It became apparent that diagnostic packets were necessary during the deployment
of XCAST6. The path of an XCAST6 packet between a sender and one of receivers is
usually not the same as the path of a unicast packet between the sender and the
receiver. On IPv6 unicasts, the sender can check reachability to the receiver by
the ICMPv6 Echo Request message. On XCAST6, the ICMPv6 Echo Request message is
unusable since the destination address field in IPv6 header is a multicast
address.

In order to check the reachability from the sender to one of the receivers, we
experimentally introduced a sub-option in Hop-by-hop options header. The sub-
option specifies which destination should respond with the ICMPv6 Echo Reply
message. We have slightly modified the receiver routine of ICMPv6 to implement
this functionality. The “ping6x” userland program has also been implemented.

 4. Related work

In this section, we describe the related implementations on XCAST6 and the
operational activities called “X6bone”.

 4.1. Group management

The group management for XCAST6 is completely separated from the function of
forwarding or routing. That enables application developers to utilize their own
application-specific group management functions free from group as well as group
multicast address schemes, There are several implementations that help XCAST

44

application developers to make the group formation and management.

 4.1.1. Xcgroup

The application of XCAST6 requires the list of destinations. We created a CGI
script for httpd and a client program called "xcgroup". The application user
invoke “xcgroupsrv” with a URL of CGI for managing the information of group name
and its membership (i.e., participating nodes). Client “xcgroup” periodically
sends a query to the “xcgroupsrv” CGI script by http and the CGI script acquires
the IPv6 source address of the http query and records it in a list. Then it
retrieves all the IPv6 source addresses recorded in the list and provides the
client program that information. As a result, consistent membership information
among the participants can be provided. Xcgroup announces the list of acquired
unicast addresses for Mbone tools via mbus [RFC3259] so that XCAST applications
on the same host can share the address list.

 4.1.2. Group Management using SIP

The method how to arrange the multiple IP address for XCAST session had been
discussed in [SIPSDP]. It proposed the method to exchange IP addresses and port
numbers between participants using SIP and the method to carry multiple port
numbers in XCAST header.

 4.2. Testbed and deployment activities

To prove the concept of XCAST, WIDE XCAST WG started operating the testbed
called X6Bone.It consists of a virtual overlay IPv6 network over IPv4 network by
tunnels connecting many SOHO routers to a HUB XCAST router via ADSL and FTTH.
The NAT traversal tunnel is made by the implementation of DTCP: Dynamic
Tunneling Configuration Protocol[DTCP] and L2TP[L2TP] which invoke DHCPv6 PD
over PPP over L2TP over UDP over IPv4. The XCAST6 datagrams traveling on the
X6Bone could be branched at the HUB routers, thus eliminating the problem of
inefficient daisy-chained connections by semi-permeable tunnel trick.

 4.2.1. XCAST6 enabled VIC and RAT

Well-known Mbone tools VIC and RAT have been modified and integrated with
XCAST6. On the sender side, original VIC and RAT bind the transmission socket to
the multicast group address. We modified the procedures to call library
function, XCASTAddMember() to append unicast addresses of the participated node
that is provided by group management mechanism. On the receiver side, no
modification is necessary since the payload of an XCAST6 datagram can be
acquired by calling ordinary recv() function. The total amount of additional
code is less than 200 lines for vic and 150 lines for RAT.

We have utilized the modified VIC and RAT on the X6bone. Next section explains
the deployment activities with them.

 4.2.2. Deployment activities

We envision that typical target usage of XCAST as casual conversations to
exchange emotional atmosphere among private community like families and friends.
Based on this assumption, we made various trials on the X6bone including the
open source developer BoFs, the wedding ceremony, conversations with person in
transportation, moving bicycle[ROMAIN] and boarding on the airplane flying over
north pole. By January of 2008, the number of groups joining the meeting has
increased to 10 organizations including BSD User groups in Asia and France.

In order to make these kind of conversation easily and fruitful, many related
tools were developed utilizing *BSD variants as follows.

45

� Fukidashi-kun: Tools to display words on his/her VIC screen just like
mumbling by Yasushi Oshima of Nagoya BSD user club.

� The device driver modifications of Web cam for FreeBSD/NetBSD by Takafumi
Mizuno of Nagoya BSD user club.

� Instant XCAST6 CD: Bootable *BSD environments with XCAST6 packages.
“Ebifurya” based on NetBSD. “FreeSBIE” based were contributed by Daichi
Goto.

Figure 1: example screen shot of XCAST meeting on X6Bone in Japan.

 5. Conclusion

We implemented XCAST6 protocol onto FreeBSD and NetBSD. In order to realize
XCAST logic, we utilize existing unicast basis *BSD intrinsically equipped. As a
transmission node, XCAST packet is just formulated and triggered to send out in
the way of extended socket API, [RFC3542]. Kernel determines directions of the
datagram to be forwarded looking up the next hop information of unicast routing
basis and branches if needed. Tunneling pseudo device helps the datagram
passing over the non-XCAST networks.

To deploy the XCAST6 network, we can use many tools to establish IPv6
connectivity without any modification. We operate X6Bone, the experimental
XCAST6 network, using l2tp, dtcp, PPPoE and Ethernet emulation of Packetix. We
can use such tools if they exchange ordinal IPv6 unicast datagrams.

Style of the interface for application keep similar with one of group multicast
so that MBone tools can be easily modified to handle XCAST6.

We made the extended version of unicast reachability diagnosis tools such as
ping6, traceroute6 with small modification with ICMP6 functions. Using these
tools, it become very easy to check XCAST6 reachability compared with the group
multicast specifics like mtrace.

With our X6Bone experience, we discussed with IETF community and convinced them

��������	�
����
��������
� ����������������
���

���������
� ��
�������!!����"���#	�$%&

�
���%����'�	()*�'��$���'�
$�++�,�'�����������

46

that there should be other class of multicast than group-address one. For the
topic, SAM RG: Scalable Adaptive Multicast Research Group was made in IRTF. We
keep reporting XCAST operational experiments including implementing status for
various OS, Linux, Windows and *BSD of course.

�������	
��	�

Yoichi SHINODA of JAIST, Jun-ichiro "itojun" Hagino of KAME project and Hideaki
YOSHIFUJI of Usagi project gave us great advice for our XCAST6 implementation.
Takamichi TATEOKA, Sohgo TAKEUCHI and Tomo TATSUMI has been contributing the
operation of X6bone. Rick Boivie of IBM and John Buford of Avaya kept
encouraging us to make XCAST concept as an experimental RFC. And we express our
greatest gratitude to WIDE Project, Asian Internet Interconnection
Initiatives(AI3), Korean IPv6 community, ETRI and IRISA for the cooperation of
our experiments.

�	�	�	��	

[STD 5] S. Deering, "Host Extensions for IP Multicasting", STD 5, RFC 1112,
September 1989.

[AGUILAR] L. Aguilar, "Datagram Routing for Internet Multicast- ing", Sigcomm84,
March 1984.

[SOLA] M. Sola, M. Ohta, T. Maeno. “Scalability of Internet Multicast
Protocols”,INET'98, http://www.isoc.org/inet98/proceedings/6d/6d_3.htm

[RFC2902] S. Deering, S. Hares, C. Perkins, and R. Perlman, "Overview of the
1998 IAB Routing Workshop", RFC 2902, August 2000.

[RFC3259] J. Ott, et al., "A Message Bus for Local Coordination", RFC3259, April
2002

[RFC3542] W. Stevens, M. Thomas, E. Nordmark, T. Jinmei. “Advanced Sockets
Application Program Interface (API) for IPv6”. RFC3542, May 2003.

[RFC4984] D. Meyer, L. Zhang, K. Fall, “Report from the IAB Workshop on Routing
and Addressing”, RFC4984, September 2007

[RFC5058] Boivie,R.,N. Feldman, Y. Imai,W. Livens,D. Ooms, “Explicit Multicast
(Xcast) Concepts and Options”, RFC5058, November 2007.

[SAINT] Y. Imai, H. Kishimoto, M. Shin, Y. Kim, “XCAST6: eXplicit Multicast on
IPv6”, IEEE Symposium on Applications and Internet Workshops, January 2003.

[DTCP] H.Umemoto, DTCP homepage, http://www.imasy.or.jp/~ume/published/dtcp/

[L2TP] H.Umemoto, L2TP document,
http://www.imasy.or.jp/~ume/presentation/CBUG-20070421/l2tp-pd.odp

[ROMAIN] R. KUNTZ,”The E-Bicycle Demonstration Setup on Tour de France

2006”,http://member.wide.ad.jp/tr/wide-tr-nautilus6-ebicycle-tour-de-
france-00.pdf

[SIPSDP] B. Van Doorselaer, “SIP for the establishment of xcast-based multiparty
conferences”, http://www.tools.ietf.org/html/draft-van-doorselaer-sip-xcast-00,
July 2000.

47

48

Using FreeBSD to Promote Open Source Development Methods

Brooks Davis, Michael AuYeung, Mark Thomas
The Aerospace Corporation

El Segundo, CA
{brooks,mauyeung,mathomas}@aero.org

Abstract

In this paper we present AeroSource, an initiative to
bring open source software development methods to
internal software developers at The Aerospace Corpo-
ration. Within AeroSource, FreeBSD is used in sev-
eral key roles. First, we run most of our tools on
top of FreeBSD. Second, the ports collection (both
official ports and custom internal ones) eases our ad-
ministrative burden. Third, and most importantly the
FreeBSD project serves as an example and role model
for the results that can be achieved by an open source
software projects. We discuss the development infras-
tructure we have built for AeroSource based largely
on BSD licensed software including FreeBSD, Post-
greSQL, Apache, and Trac. We will also discuss
our custom management tools including our system
for managing our custom internal ports. Finally, we
will cover our development successes and how we use
projects like FreeBSD as exemplars of open source
software development.

1 Introduction to Aerospace

The Aerospace Corporation operates a Federally
Funded Research and Development Center for Na-
tional Security Space. From the corporate web
site[Aerospace]:

Since 1960 The Aerospace Corporation has
operated a federally funded research and
development center in support of national-
security, civil and commercial space pro-
grams. We’re applying the leading technolo-
gies and the brightest minds in the industry
to meet the challenges of space.

The company employs approximately 2400 engineers
on a wide range of disciplines. In today’s engineering

c©2007-2008 The Aerospace Corpora-
tion.

climate, a large potion of these engineers write soft-
ware, up to thousands of programs by some counts.

Due in part to the fact that these engineers are
not trained software developers, the quality of soft-
ware and software development methods varies widely.
Since Aerospace helps oversee the development of mas-
sive software projects, we have a significant number
of people who are trained to develop these types of
software. They represent one of two historical groups
of developers at Aerospace. They use big, heavy de-
velopment processes which produce reliable software
suitable for all sorts of applications, but require signif-
icant numbers of full-time developers and large paper
trails.

The other camp takes a laissez-faire approach to soft-
ware development. They tend to use little or no pro-
cesses to the point that one of the more advanced
groups was using a shared file system for development
with a white board to lock files before the AeroSource
team started working with them. As would be ex-
pected, this approach to development yields highly
variable results. A number of pieces of software are
very useful and some are even distributed outside the
company, but even with those we’ve heard reports of
problems like features disappearing between releases.

Past attempts to encourage developers of the more
important pieces of software to adopt more rigorous
development practices have met with limited success.
One problem is that these developers quite reason-
ably fear the more heavy weight processes they see
employed to build big systems. In addition to the
process overhead of these methods developers worry
about the cost of tools and the need to learn new
tools. Other problems include inertia in the face of
demanding schedules.

AeroSource is our current attempt to bring modern
software development methods to the more ad-hoc de-
velopment projects within Aerospace. We are pro-
moting the idea that using tools and methods from
open source software development provides a useful
midpoint between big, expensive software methods
and current practices. In addition to promoting open

49

source software and development methods, we are also
promoting the open source development philosophy
within the company. We call this internal open source,
enterprise source software. Enterprise source software
enshrines principles of open source, but is restricted to
the enterprise. Users of enterprise source are free to
read the source code, build and run it, make changes
to it, and redistribute modified versions of it as long as
they do so within the bounds of the company. Exter-
nal software distribution remains governed by existing
processes.1

In the rest of this paper we discuss our experiences
designing, developing and promoting AeroSource and
the enterprise source concept. We discuss our use of
FreeBSD throughout, both as the foundation of our
infrastructure and as an example of both what can
be achieved with open source methods and one set
of highly effective methods. In the next section we
discuss open source and enterprise source software.
We then discuss our efforts to promote the enterprise
source concept and the reactions we have encountered.
Coming from the open source software world, we of-
ten find it hard to credit the issues people raise, but
we have found it is critical to do so if we are going
to convince people to support enterprise source. As
part of this section we discuss our implementation of
AeroSource, a resource for collaborative software de-
velopment using FreeBSD and other open source tech-
nologies. We also talk about our successes and failures
in recruiting projects to use it. Finally we conclude
with a discussion of future directions for AeroSource.

2 Open Source and Enterprise Source
Software

According to the Open Source Initiative “open source
is a development method for software that harnesses
the power of distributed peer review and transparency
of process.”[OSI] Many definitions of open source ex-
ist including the OSI Open Source Definition[OSD].
For our purposes we define an open source project as
one that allows the four freedoms defined by the Free
Software Foundation[Wikipedia] (the wording below
is ours):

• The freedom to run the software, for any purpose

• The freedom to study how the software works,
and adapt it to your needs

• The freedom to redistribute copies
1We have ambitions to encourage the release of more

Aerospace code as open source. Promoting enterprise source
the first of several steps in that direction.

• The freedom to improve the software, and release
the improvements to anyone for the benefit of all

Advocates of the open source development mode argue
it has numerous benefits. Those benefits include “bet-
ter quality, higher reliability, more flexibility, lower
cost, and an end to predatory vendor lock-in”[OSI].
These benefits derive directly from the four freedoms
listed above. The quality and reliability claims de-
rive from the idea that with more people working on
the code, bugs are more likely to be discovered and
fixed. There is a common idea in the open source
community that “given enough eyeballs, all bugs are
shallow”[CatB]. In our experience this is true for sim-
pler bugs, but for very complex issues, there often are
not enough people who understand the problem for
this to work. One case where we do find quality to
be better is adherence to unified code styles. In our
experience and that of others we have talked to, large
open source projects tend to have cleaner, more read-
able source code that internally developed code. Flex-
ibility and protection from lock-in derive from the fact
that users can modify the software themselves or hire
someone to make the changes they want. As a result
users can adapt to unforeseen software needs and add
the functionality they want rather than things the de-
velopers’ marketing department thinks they can sell.
Lower cost is obvious since the software is free.

In addition to these benefits, open source development
methods provide other advantages within the enter-
prise. Because open source developers often have an-
other day job, they generally can not be bothered with
excessively involved procedures. Thus, open source
projects tend to use processes that are low friction. By
adopting these processes, developers can build higher
quality software without resorting to traditional, high
overhead methods. Another benefit within the enter-
prise is that if people publicly share their code and
others can find it, duplication of effort can be reduced.
For example the world only needs so many tools to
parse the same telemetry format.

Much of the software produced at Aerospace that
would benefit from the wider exposure open source
development brings is not possible or practical to re-
lease to the general public for a range of technical,
legal, and political reasons. When promoting open
source methods, we discovered we needed a term to
describe the internal use of those methods since sim-
ply talking about open source or internal open source
often lead people to think we would be posting their
code to Source Forge or another public site. To cap-
ture this concept we coined the term enterprise source
software. Enterprise source software is everything that
open source software is, but restricted to an enterprise.
All of the four freedoms hold for enterprise source soft-

50

ware, but with the added restriction that it must stay
within the organization. At Aerospace this means that
enterprise source source software may leave the com-
pany only though official software release channels.

We believe that the growth of enterprise source at
Aerospace will improve the quality of the software we
develop and increase the skill of our software develop-
ers.

3 Promoting Enterprise Source

In an effort to improve the development practices used
by the less formal software projects at Aerospace we
are working to promote the enterprise source concept
for internal use. Our efforts center on encouraging
the internal publication of source code and the use of
open source tools and methods to develop that soft-
ware. AeroSource, our internal collaborative software
development environment, lies as the heart of our ef-
forts. It allows users to “get their feet wet” without
all the effort of maintaining their own systems. We
discuss AeroSource in detail later in this section.

3.1 Promotion Efforts

Our promotional efforts are targeted in several differ-
ent directions. We work to educate Aerospace em-
ployees on the benefits of open source software and
development methods and encourage them to adopt
them where practical. We also work to convince man-
agement of these benefits to support them from above
in addition to our more grass roots efforts.

The most basic level of advocacy is using open source
software or open source derivatives. Most people in
our organization use BSD, Linux, or Mac OS exclu-
sively and all our department servers are hosted on
open source OSes. We also host a variety of semi-
official corporate services including open source soft-
ware mirrors, a list server, and a number of wikis.

The next level of advocacy is formal open source edu-
cation. We have given a number of lectures on benefits
of open source and open source development meth-
ods at internal forums. We also developed a tutorial
on open source development methods which we pre-
sented at the Ground System Architecture Workshop
in 2007[GSAW]. In these talks we promote the variety
of great software available as open source both for it’s
own sake and to demonstrate that the non-traditional
development efforts involved can and do produce top
quality software.

FreeBSD is a key component of this promotion ef-
fort. We use it extensively in our infrastructure and
because we are extremely familiar with it’s develop-
ment process, we can speak with authority on the
processes involved. This is helpful in convincing peo-
ple that we really do know what we are talking about
with regard to open source development. The avail-
ability to resources such as the FreeBSD Develop-
ers Handbook [GSAW] and Robert Watson’s How the
FreeBSD Project Works[Watson] talk helps in this re-
gard. Other projects we use as examples include Gan-
glia, K Desktop Environment (KDE), and Linux.

The most specific form of advocacy is AeroSource.
With AeroSource we give developers the tools they
need and help train them in the tools and best prac-
tices for using them. We help with things like reposi-
tory layout, process, and usage. Eventually we hope to
provide continuous integration tools like tinderboxes.

3.2 An Overview of AeroSource

AeroSource provides collaborative tools to software
projects including tightly integrated version control,
bug tracking, and a wiki. We also provide e-mail lists
that can be integrated with the bug tracking and ver-
sion control systems. This functionality is provided
by Trac and GNU Mailman with version control pro-
vided by Subversion. Trac is one of several projects
that aim to create a complete, web-based collabora-
tive environment for open source development. Trac
is open source (BSD licensed) and is built on top of a
large stack of other open source software. In our in-
stallation we use Subversion for version control, Post-
greSQL as the database, Apache for the web servers,
and FreeBSD for the operating system.

When developing AeroSource we looked at several al-
ternatives including GForge, SourceForge, and build-
ing our own system. GForge was rejected due to prior
experience: it worked, but upgrades were time con-
suming and difficult. SourceForge was not an option
because we wanted to keep software internal and we
were not prepared to purchase the commercial ver-
sion. After finding Trac we concluded that any ben-
efits from building our own system were likely to be
minimal compared to starting with an already work-
ing system. Systems we did not consider at the time
but would consider today include CollabNet and Ret-
rospectiva.

Today, AeroSource contains over 50 projects ranging
from small repositories of scripts to large established
projects. Our most prominent win is is the Satellite
Orbital Analysis Program (SOAP), a cross platform
(MacOS, UN*X, and Windows) 3D orbit visualization

51

Figure 1: AeroSource.aero.org

and analysis program. SOAP has been under devel-
opment for more than a decade in numerous forms
and is one of Aerospace’s crown jewels, so winning
the development team over was a major milestone for
AeroSource. Other projects include collections of Perl,
IDL, and Matlab scripts and configuration files for a
number of internal systems including AeroSource it
self.

Users seem generally pleased with Trac and Subver-
sion, but we have encountered a few problems. The
most severe one is that the wiki implementation has no
support for simultaneous edits. In it’s current form,
if two users edit the same page, the second user loses
all their work when they submit. This is arguably
the worst of all possible behaviors. Otherwise, Trac is
working fairly well for us. The only other significant
issue we have found is that some parts of Trac are
more easily customized that others. There is a solid
plugin framework, but if what you want cannot be ac-
complished through it maintaining modifications can
be complex.

3.3 Maintaining AeroSource

With AeroSource, we do our best to “eat our own dog
food” and use Trac and Subversion as much as pos-
sible to aid in maintenance. We store configuration,
custom Trac modules, and administration scripts in
AeroSource. The project homepage is a Trac instance
and we use the ticket system to track most mainte-
nance operations. The AeroSource front page can be
seen in Figure 1.

The maintenance operations of AeroSource are fairly
normal, but a few things stand out. We use
freebsd-update to keep the base system up to date
and install most of our software using the FreeBSD

ports collection.

One one very useful customization we have de-
veloped is a set of local ports stored in an
AeroSource hosted subversion repository. We call
this collection AeroPorts. We check our ports
out under /usr/ports/aero and ports live in
<category>/<port> subdirectories. Figure 2 shows
the top-level Makefile and Figures 3 and 4 show an
example of the make files for each <category> sub di-
rectory. With this setup, we can easily maintain local
ports of things that are not useful to the general pub-
lic, or custom modifications of existing ports to per-
form non-standard tasks. One example of this is a cus-
tom version of the security/pam ldap port that au-
thenticates based on LDAP queries on userid’s instead
of usernames. Another is the misc/aero-bootstrap
port which is a meta-port we use to install basic ad-
ministrative tools on our FreeBSD machines. This
method of incorporating local ports in the ports tree
is based on a suggestion by Scot Hetzel on the freebsd-
ports mailing list[Hetzel].

To simplify management of these local ports we have a
wrapper for the portsnap and svn commands call apt
(Aerospace Ports Tool). The apt command performs
an svn update and portsnap update using the “-l
descfile” option to refresh the ports tree and build
combined ports/INDEX* files as needed. This yields
functionality virtually identical to that of portsnap,
but with full integration of our local ports.

3.4 Results

Thus far, our efforts have met with a number of suc-
cesses, but we still have some work to do. As we
mentioned in Section 3.2 we have recruited over 50
projects to AeroSource thus far. We have also had
some projects that were not able to become enterprise
source software express interest in the tools.

The import of the Satellite Orbital Analysis Program
(SOAP) to AeroSource represents a major win and
were in fact funded to make the transition. The first
release has not yet been cut, but development is well
under way and the developers have made significant
progress in using the tools.

Some other projects have resisted the idea for a vari-
ety of reasons. Some want absolute control over the
code they perceive ownership of. Reasons for wanting
that control range from not wanting others to see their
code to wanting to ensure that no one releases a modi-
fied version lest they be blamed for bugs introduced by
someone else. We have had some success with the first
case and a bit with the second, but we have not won all

52

COMMENT= Ports specific to Aerospace Corp

SUBDIR += archivers
SUBDIR += astro
SUBDIR += misc
SUBDIR += net
SUBDIR += science
SUBDIR += shells
SUBDIR += sysutils

descfile:
@cd ${. CURDIR }; ${MAKE} describe | grep -v ’^===>’ > descfile

.include <bsd.port.subdir.mk>

Figure 2: aero/Makefile

COMMENT= Local Aerospace system utilities

SUBDIR += apt
SUBDIR += diskprep -aero
SUBDIR += macports
SUBDIR += powerctl

.include <bsd.port.subdir.mk>

Figure 3: aero/sysutils/Makefile

This file needs to be copied into every aero /*/ subdirectory to set

common variables.

Used to set the origin of the local port

PKGORIGIN= aero/${PKGCATEGORY }/${PORTDIRNAME}

Used in the local ports tree to set dependencies on other local ports.

AEROPORTSDIR= ${PORTSDIR }/aero

#Uncomment if you want your local packages to have a "-aero" suffix.

#PGKNAMESUFFIX ?= -aero

Figure 4: aero/sysutils/Makefile.inc

53

the arguments. In once case we have even heard that
developers have threatened to quit if forced to open
their code. A variant of the argument that only the
current developers know enough to modify the code
is that only the developers can use the code properly.
We agree this can happen, but think that is not in and
of itself a good reason not to open the code. These
were all arguments we expected to some extent based
on past experiences. We also ran into a couple we were
not expecting. In one case some people felt other de-
velopers should implement a certain algorithm as a
right of passage. We weren’t sure how we felt about
that one. In another case, developers were concerned
that people might like their code so much they should
improve it and then the developers would have to in-
corporate the improvements. We thought seemed like
a good thing rather than a problem.

4 Future Directions & Conclusions

We are generally pleased with our progress in intro-
ducing open source software development methods to
Aerospace. We a large organization that is largely
staffed by engineers with decades of experience, we do
not expect to convert everyone over night. We feel
many pieces of software within Aerospace could also
benefit from full, open source release, but for now we
are content with modernizing internal development ef-
forts.

AeroSource itself is functioning very well. We hope
to continue to incremental improve the management
processes to make project setup easier and to enhance
the ability of our users to perform their own project
maintenance. We will also continue to monitor Trac
development and the development of competing sys-
tems to provide our users with the best environment
we can. Other future work includes more tutorial ma-
terials and more streamlined startup processes for new
projects.

References

[Aerospace] The Aerospace corporate web site.
October 11, 2007.
http://www.aero.org/

[CatB] Eric S. Raymond. The Cathedral and the
Bazaar. September 11, 2000.
http://www.catb.org/∼esr/writings/
cathedral-bazaar/cathedral-bazaar/

[GSAW] The FreeBSD Project. The FreeBSD
Developers’ Handbook. http:

//www.freebsd.org/doc/en US.ISO8859-1/
books/developers-handbook/index.html

[GSAW] Brooks Davis, Sam Gasster, Jorge Seidel,
Mark Thomas. Open Source Software Methods
in Ground Systems.

[Hetzel] E-mail to the freebsd-ports@freebsd.org
mailing list. November 14, 2006.
http:

//docs.freebsd.org/cgi/mid.cgi?db=irt&id=

790a9fff0611141011q4bd9ee97h9357e6d959f95abb@

mail.gmail.com

[OSD] The Open Source Initative’s Open Source
Definition. July 7, 2006.
http://www.opensource.org/docs/osd

[OSI] The Open Source Initative web site. January 23,
2008.
http://www.opensource.org/

[Watson] Robert N. M. Watson. How the FreeBSD
Project Works. In Proceedings, 2006 EuroBSDCon,
Milan, Italy.

[Wikipedia] Wikipedia article on free software. January
23, 2008.
http://en.wikipedia.org/wiki/Free software

All trademarks, service marks, and trade names are the
property of their respective owners.

54

Send and Receive of File System Protocols:
Userspace Approach With puffs

Antti Kantee <pooka@cs.hut.fi>

Helsinki University of Technology

ABSTRACT

A file system is a protocol translator: it interprets incoming requests and transforms
them into a form suitable to store and retrieve data. In other words, a file system has the
knowledge of how to convert abstract requests to concrete ones. The differences between
how this request translation is handled for local and distributed file systems are multiple,
yet both must present the same semantics to a user.

This paper discusses implementing distributed file system drivers as virtual file system
clients in userspace using the Pass-to-Userspace Framework File System, puffs. The
details of distributed file systems when compared to local file systems are identified, and
implementation strategies for them are outlined along with discussion on where and how
to optimize for maximal performance.

The design and implementation of an abstract framework for implementing distributed
file systems on top of puffs is presented. Tw o distributed file system implementations are
presented and evaluated: psshfs, which uses the ssh sftp protocol, and 9puffs, which uses
the Plan9 9P resource sharing protocol. Additionally, the 4.4BSD portal file system and
puffs user-kernel communication are implemented on top of the framework. The perfor-
mance of userspace distributed file systems are evaluated against the in-kernel NFS client
and they are measured to outperform NFS in some situations.

Keywords: distributed file systems, userspace file systems, software architecture

1. Introduction

One taxonomy for file systems is based on
where they serve data from:

• Fictional file systems serve a file system
namespace and file data which is generated by
the file server. Examples are procfs and devfs.

• Local file systems serve data which is located
on the local machine on various types of
media. Examples are FFS, cdfs and tmpfs for
hard drive, CD and memory storage, respec-
tively.

• Distributed file systems serve non-local data,
typically accessed over a network. Examples
are NFS [1] and CIFS [2].

A typical distributed file system will serve
its data off of a local file system, but it is also free
to serve it from a fictional file system, its own
database or even another distributed file system.

Distributed file systems can be subdivided
into two categories. In client-server type file sys-
tems all served data is retained on dedicated
servers. The examples NFS and CIFS given ear-
lier are examples of this kind of a file system.
Peer-to-peer file systems treat all participants
equally and all clients may also serve the file sys-
tem’s contents. Examples of peer-to-peer file sys-
tems are ivy [3] and pastis [4]. We concentrate on
client-server systems, although all discussion is
believed to apply to peer-to-peer systems as well.

55

Figure 1:
Structural comparison of userspace and kernel distributed file system drivers

application

kernel
incl. VFS

puffs

driver
sshfs/9p

network network

file server
sftpd/u9fs

file system

kernel

user

application

kernel
incl. VFS

NFS client network network
NFS

+backend

kernel

user

client server

Core operating system services such as file
systems are historically implemented in the kernel
for performance reasons. With ever-growing
machine power, more and more services are being
pushed out of the kernel into separate execution
domains. This provides both improved reliability
and an easier programming environment. The
idea of abandoning a monolithic kernel itself is
not new and has been around in systems research
for a long time with operating systems such as
Mach [5]. The idea has, however, recently gained
interest especially in file systems because of the
FUSE [6] userspace file system framework.

It is, however, incorrect to assume that a
userspace file system implementation will solve
all problems by itself. In fact, it is nothing more
than pushing the problems of implementing a file
system from one domain to another.

This paper explores implementing distrib-
uted file systems in userspace on NetBSD [7].
While details are about NetBSD, the ideas are
believed to hav e wider usability. The attachment
for file systems is provided by puffs [8]. The file
systems interface already exported to userspace is
not replaced for distributed file systems [9], but
rather extended by building a framework upon it.

The following contributions are made:

• Explaining file system concepts relevant to
implementing distributed file systems in
userspace.

• Presenting the design and implementation of a
framework for creating distributed file systems
in userspace.

Tw o file systems have been implemented:

• psshfs: a version of the ssh file system written
specifically to use the features of puffs to its
maximum. As its backend, psshfs uses the ssh
sftp [10] sub-protocol.

• 9puffs: a file system client implementing the
Plan9 9P [11] resource sharing protocol.

Unforeseen uses include:

• portalfs: the 4.4BSD portal file system

• puffs: by treating puffs itself as a peer-to-peer
file system, the framework can be applied for
transmitting requests from and to the kernel.

The remainder of this paper is organized as
follows. Chapter 2 giv es a very short overview of
the concepts of puffs relevant to this paper. Chap-
ter 3 presents an overview of what a file system is
and points out key differences between local and

56

distributed file systems from an implementor’s
point of view. Chapter 4 presents a framework for
implementing distributed file systems. Chapter 5
contains experimental results for the implementa-
tions presented in this paper. Chapter 6 provides
conclusions and outlines future work.

2. Short Introduction to puffs

This section provides readers unfamiliar
with puffs the necessary overview to be able to
follow the paper. A more complete description of
puffs can be found elsewhere [8,12].

puffs is a framework for building file sys-
tem drivers in userspace. It provides an interface
similar to the kernel virtual file system interface,
VFS [13], to a user process. puffs attaches itself
to the kernel VFS layer. It passes requests it
receives from the VFS interface in the kernel to
userspace, waits for a result and provides the VFS
caller with the result. Applications and the rest of
the kernel outside of the VFS module cannot dis-
tinguish a file system implemented on top of
puffs from a file system implemented purely in the
kernel. Addtionally, the kernel part of puffs
implements the necessary safeguards to make sure
a malfunctioning or mischievous userspace com-
ponent cannot affect the kernel adversely.

For the implementation of the file system in
userspace a library, libpuffs, is provided. libpuffs
not only supplies a programming interface to
implement the file system on, but also includes
convenience routines commonly required for
implementing file systems. An example of such
convenience functionality is the distributed file
system framework described in this paper.

A file system driver registers a number of
callbacks with libpuffs and requests the kernel to
mount the file system. The operation of a file sys-
tem driver is driven by its event loop, in which the
file system receives requests, processes them and
sends back a response. Typically, a file system
driver will want to hand control over to
puffs_mainloop() after initialization and
have it take care of operation. For example, the
file system drivers described in this paper hand
control over to the mainloop. Nevertheless, it is
possible for the file system also to retain control
with itself if it so desires and dispatch incoming
requests using routines provided by libpuffs.

Since distributed file system operations
cannot usually be completed without waiting for a
response from a server, it is beneficial to be able
to have multiple outstanding operations. In most

Figure 2:
Multiple Levels of Client and Server

client: virtual file system
application

client: file system driver
server: virtual file system

client: file server
server: file system driver

server: file server

syscall

puffs protocol

file system protocol

programs this is accomplished by threads or an
ev ent loop with explicitly stored state. puffs takes
a different route: it provides cooperative multi-
tasking as part of the framework and allows file
system builders to schedule execution when
needed. This, as opposed to using threads, means
that the file system driver is nev er scheduled
unexpectedly from its own point of view. Each
execution context has its own stack and machine
context, so yielding and continuing can be done
with minimal programming involvement and
without explicitly storing register and stack state.

Every file system callback dispatched by
the library has an associated execution context
cookie, puffs_cc. This is used to yield execution
by calling puffs_cc_yield(). Execution is
resumed by calling puffs_cc_continue() on
the same context cookie. The cookie may be
passed around like any variable. It is invalidated
once the request has been handled.

3. Structure of a Distributed File System

Distributed file system architecture along
with this paper’s terminology is presented in Fig-
ure 2. The term file server is used to describe the
entity servicing the file system namespace and file
contents using the file system protocol. The file
system driver translates requests from the kernel
virtual file system to the file server.

57

Distributed file systems operating over the
network send out queries to the server to satisfy
requests. Queries include an identification tag,
which is used to pair responses from the server to
issued requests. Of the file system protocols dis-
cussed in this paper, the Remote Procedure Call
[14] mechanism used by NFS contains a transac-
tion identifier, XID, ssh sftp [10] uses a 32bit
request identifier and 9P [11] uses a 16bit tag.

The format of a message inside query
frames is dependent on the file system protocol.
However, at least the following operations, in
some form or another, are common:

• open files to create file handles (and close file
handles)

• read and write given file handle

• read the entries in a directory

• get and set the attributes of a file

• create and remove files, directories and special
files

The discussion in the rest of this chapter
applies to both the 9P and sftp protocols, although
some of the mentioned features have been so far
implemented only for psshfs. 4.4BSD NFS
[15,16] is used for comparison in select places.

3.1. Network vs. Local Media

File system protocols commonly use TCP1

for transport. A TCP connection is effectively a
FIFO queue with latency and bandwidth charac-
teristics. Once data is placed into the network
socket, it will be transmitted in-order. This means
that on a slow link with a large amount of data
already in the buffer, it can take sev eral seconds
before anything inserted into the buffer will reach
the peer. To take a concrete example, consider
one thread doing a bulk read of a file and another
thread doing ls. If sev eral hundreds of kilobytes
of incoming data has been requested and already
queued into the socket by the server, it will take
several seconds for the response to the directory
read to reach the requesting end. Additionally,
since reading a directory typically requires an
EOF confirmation, it will take a minimum of two
of these several second round trips. It is impor-
tant to notice that after we send a request which
causes the server to queue up large amounts of
data, we cannot "unrequest" it any longer even
though we might need the bandwidth for

1 NFS is transport-independent and has support
for e.g. UDP transport, but as that is not applicable
for remote sites, it is not discussed here.

something more urgent in interactive use.

A local file system’s media access is not as
limited. Requests are queried and can be
answered out-of-order depending on how the mul-
tiple layers from the disk scheduler to the driver
and device itself see best. While large bulk trans-
fers will slow down smaller requests such as a
directory read, they will not necessarily com-
pletely stall them.

There are two approaches to dealing with
this in distributed file systems:

Request throttling: do not allow one thread to
issue requests saturating the pipe for several sec-
onds. This is notable especially when the virtual
memory system does read-ahead requests for
large amounts of data. Since the purpose of read-
ahead is make sure data is already locally cached
when an application demands it, disabling read-
ahead would cause application request latency.
Ideally, the amount of read-ahead should be based
on latency, available bandwidth and the total num-
ber of outstanding requests in the file system
driver. As the heuristics to optimize this get com-
plex fast, a much more pragmatic approach was
taken: a command line option to limit the number
of read-ahead requests per node. While far from
perfect, this takes care of massive bursts and miti-
gates the problem for the most part.

Tw o separate channels: one for bulk data and
one for metadata. Even though both connections
share the same bandwidth, they will operate in
parallel, and bulk transfers will not completely
stall other requests. However, opening two TCP
connections brings additional complications.
First, we must authenticate twice. Second, all
operations which create state must be duplicated
for both channels, e.g. we must walk the file hier-
archy for both connections with 9P. While in the-
ory this option will provide better benefit, due to
these complexities, it was not implemented � it is
better to wait for the adaption SCTP [17] to solve
the difficulties of multistreaming for us.

3.2. Distributed vs. Local File Systems

Some virtual file system operations are
biased to the file system driver having direct
access to the storage medium. This is not an issue
for local file systems and also for distributed file
systems specifically designed to inter-operate well
with the virtual file system layer (e.g. NFS).
However, all file system protocols (e.g. sftp) do
not support the necessary functionality and must
resort to alternative methods.

58

This section discusses differences between
distributed and local file systems and points out
what is important to keep in mind when imple-
menting a distributed file system driver in
userspace. It also includes tips on increasing the
performance of distributed file systems.

Permissions

Access control is not done in operations
themselves, but rather using the access method.
This presents problems for distributed file systems
in several places: the typical I/O system calls
(read, etc.) are not expected to return EACCES.

Some file system protocols do not present
an opportunity to make access checks without
making calls themselves. For example, with sftp
we have no definitive idea in the file system driver
of how our credentials map at the other end and
therefore cannot do access checks purely by look-
ing at the permission bits. The options are either
to ignore the proper access method all together or
execute shadow operations to check for access.

Luckily, in most of the cases applications
deal well with returning EACCES from an I/O
call, especially read/write. Howev er, readdir is
an exception and without implementing the
access method properly, applications will only see
an empty directory without any error message
ev en if readdir returns an error. This is because
readdir() is implemented in the system library
and ignores permission errors from the get-
dents() system call. However, most file system
protocols allow and require a directory to be
opened for reading before fetching the contents.
If the file system driver returns a permission error
already when opening the directory for reading,
the error is displayed properly in userspace.

Lookup

Lookup is the operation by which a file sys-
tem converts a pathname component into an in-
memory data structure to be used in future refer-
ences to that file. This means that the file system
should create an internal node for the file if found.
In addition to a structural pointer, puffs requires
three other pieces of information on the file:

• file type (regular file, directory, ...)

• file size (if a regular file)

• device number (if a device)

Typically the best strategy for implement-
ing lookup in distributed file systems is doing
readdir for the directory the lookup is done from

and scanning the results locally.

Permissions also present an extra step for
lookup. Lookup should return success for an
entry which is inside an unreadable directory. To
circumvent this, lookup can first attempt to read
the directory, and if that fails, issue the equivalent
of the protocol’s getattr operation to check if the
node exists.

It is possible to implement the lookup oper-
ation directly as a getattr operation, but it must be
kept in mind that this will introduce an n*latency
network penalty for looking up all the compo-
nents in a directory, while doing a directory entry
read once, caching the results and just scanning
the locally cached copy introduces a much
smaller cost.

While some file system protocols provide
attributes for the files directly in the readdir
return response, others might require extra effort
such as real getattr operation. Next we discuss
some optimizations possible in those cases.

The Unix long ls listing, ls -l is a fairly
typical operation, which lists directory contents
along with their attributes. Unless done right, this
operation will also reduce performance down to
n*latency because of waits for the getattr opera-
tions to complete and essentially doing nothing
meanwhile.

While both 9P and sftp already supply
attribute information as part of the readdir opera-
tion, an experimental version of psshfs was done
to simulate a situation where it does not. This
involved opportunistically firing off getattr
queries for each of the directory entries found
already during readdir and using cached values
when getattr was issued to the file system driver.
Tw o issues affecting performance were discov-
ered and are listed here as potential pitfalls.

1. readdir operations generally require at least
two round-trips for any file system protocol:
one to deliver the results and a second one to
deliver EOF. If getattr queries are queued or
sent before parts 2-n of the readdir operation,
the getattr requests are processed before the
readdir operation completes. The file system
driver will be waiting for the file server to
process a lot of getattr operations to which the
results are not needed yet. Therefore, the
getattr operations should be fired off only after
the readdir operation is completely done.

2. The attributes of the first file in the directory
are requested from the file system driver after

59

readdir finishes; almost always before the
results for the opportunistic getattr arrives
from the file system server. If the file system
driver discovers there is no cached result wait-
ing and just fires off another query without
checking if there is an outstanding request that
should be waited for, all of the getattr requests
targeted at later directory entries will be pro-
cessed before the one we are currently after.
Therefore, if an outstanding request is already
active, it should be waited for instead of firing
a new one.

Inactive

The inactive method for a file system node
is called every time the kernel releases its last ref-
erence to a node. The purpose of inactive is to
inform the file system that the node is no longer
referenced by anything in the kernel and the file
system may now free resources associated with
the node. As, for example, executing the common
command ls -l will issue an inactive for most
of the files in the directory (all the ones without
other references), inactive is an extremely com-
mon operation. However, typically a file system
requires a call to inactive only in special cases,
such as when a file is removed from the file sys-
tem. Calling the inactive method in the kernel
just costs a pointer indirection through the VFS
layer and a function call, so it is cheap. When
calling a userspace method the cost is much
higher and should be avoided if possible.

The currently implemented solution to the
cost problem is giving a file system the option for
inactive to be called only when specifically
requested. This is done with a setback operation.
When the file system driver discovers the opera-
tion it is currently performing requires inactive to
be called eventually, it issues an inactive setback.
The means that a flag is piggy-backed on the
request response to the kernel and set for the node
structure in the kernel. In addition to incurring
next to zero cost, the setback also solves problems
with locking the kernel node � deadlocks could
occur if we simply added a kernel call to flag this
condition as we would be making it from the con-
text of the file system driver. In case the inactive
flag is not set for a node when the inactive kernel
method is called, the request is simply short-cir-
cuited within the kernel and not transported to the
userspace file system driver. For example, the
open method may request inactive to be called for
reasons explained in the next section.

Open Files and Stateful File Handles

Local file systems operate on local mass
media and access file contents by directly access-
ing the media. Actual read and write operations,
including their memory-mapped counterparts, do
not perform access control. Access control is
done earlier when a file descriptor is associated
with the vnode. This means that as long as the
file descriptor is kept open, the file can be
accessed even though its permissions might
change2. Local file systems do not open any file
system level handles, as they can access the local
disk at any time a request from above mandates
they do so. The same applies to stateless versions
of the NFS protocol.

However, most distributed file systems
behave differently. For example, 9P and sftp
require an explicit protocol level file handle for
reading and writing files. These file handles must
be opened and closed at the right times for the file
system to operate correctly. For instance, assume
that our file system driver opens a file with
read/write access. Now our local system is guar-
anteed to be able to write to the file. Even if some
other client accessing the file system changes the
permissions of the file to read-only, our local sys-
tem is still able to write to the file because of the
open file handle.

Tw o different file handles are required for
each file: one for reading and one for writing. If a
file is opened read/write, it is possible to open
only one handle. However, individual read and
write handles must be opened separately, as the
file’s permissions might not allow both.

Opening handles for reading and writing is
done when file opening is signaled to the file sys-
tem by the open operation. It should be noted that
this operation can be called when the node is
already open. The file server should prefer to
open only one handle if possible. It is possible to
open a node only once for all users due to the cre-
dentials of the file handle being irrelevant; recall,
access should be checked earlier. As some file
servers and file system protocols might limit the
amount of open file handles, the file handles
should be closed once there are no users for the
file on the local system.

On any modern operating system, file con-
tents are accessed in two ways: either with

2 The BSD kernel provides a routine called
re voke(), which can be used to revoke open file han-
dles. However, it is not typically used for regular
files.

60

explicit read/write operations or through the vir-
tual memory subsystem using memory mapped
I/O. Regular I/O requires an open file descriptor
associated with the file. However, memory
mapped I/O can be performed without the file
descriptor being open, as long as the mapping
itself was done with the descriptor open. Even if
the file is closed, it is still attached to the virtual
memory subsystem in the kernel and therefore has
a reference. Assuming there are no other refer-
ences, once the virtual memory subsystem
releases the file (due to munmap() or similar),
inactive will be called. Therefore inactive is the
right place to close file handles instead of the
close method.

In the course of this work closing file han-
dles in close was attempted. It included keeping
count of how many times a file was opened in
read-mode and how many times in write-mode.
Also, the mmap method was changed to provide
information about what type of mapping,
read/write/execute, was being done so that the file
system driver could keep track of it. However, the
rules for determining if it was legal to close a file
handle in close proved to be very convoluted. For
instance, a file might have been closed less or
more times than it was opened depending on the
special circumstances. Also, as already noted, the
only way a file system is notified of the virtual
memory subsystem no longer using a file is inac-
tive. The conclusion was to avoid close and pre-
fer inactive unless there is a pressing reason to
attempt to do otherwise.

Caching

Local file systems have exclusive access to
the data on the file server. This means that every
change goes through the file system driver. The
same does not hold for distributed file systems
and the contents can change on the file server
through other file system drivers as well. This
presents challenges in keeping the cache coherent,
i.e. how to make sure we see the same contents as
all other parties accessing the file server.

Currently, the puffs kernel virtual file sys-
tem caches file contents (page cache) and name-
to-vnode lookup information (name cache). The
userspace file system driver, if it chooses to,
caches the rest, such directory contents and file
attributes. While caching in the userspace file
system driver is less efficient, in practice the dif-
ference is minimal: compare the cost of network
access to a peer with the cost of a local query to
userspace. The important point is that caching in

userspace allows a policy decision in the file sys-
tem driver. Based on knowledge of the file sys-
tem protocol, this can be made correct.

Neither sftp nor 9P support leases and
therefore it is not possible to implement fully
coherent caching. However, it is possible to add
one based on timestamps and timeouts. Every
time a file’s attributes or a directory’s contents are
requested by the virtual file system, the current
timestamp is compared against a stored one3. If
the difference is smaller than the timeout value,
the cached data is returned. Otherwise the file
server is consulted and if a mismatch is found, the
kernel virtual file system is requested to invalidate
its cache: page cache for regular files and name
cache for directories.

In addition to being able to specify a time-
out value in seconds, it is also possible to make
the cache always valid and never valid. It is
important to note that an always invalid cache is
not the same thing as no kernel caching at all.
The system’s ability to do memory mapped I/O
and therefore execute files is based on the page
cache. If we completely disable caching for a file
system (mount with the puffs option nocache),
we are no longer able to execute files off of it. By
always invalidating the cache at our checkpoints,
the cache is still frequently invalidated but MMIO
is functional. However, for typical use a timeout
of a few seconds is better even if data is fre-
quently modified from under the file system
driver. Finally, a user-assisted method of invali-
dating caches is provided: sending SIGHUP to the
server invalidates all server and kernel caches.

As was mentioned above, the kernel caches
file contents in the page cache. The page cache
works in two ways: first, file content can be satis-
fied from the cache when read, and second, writes
can be coalesced in memory and written to stable
storage later to avoid lots of small I/O requests.
The second case sometimes poses a problem for
distributed file systems. For example, if copying
a file to the mail server from where it is to be sent
as an attachment, one expects it to be fully trans-
ferred after cp finishes. Instead the file might
still reside completely in the local page cache. To
avoid these kinds of situations, the write through
cache mode for the puffs virtual file system is
used: all writes are flushed immediately after they
are done. Notably though, this does not cause
modifications via memory mapped I/O to be
flushed immediately. This can be solved by

3 NFS checks timestamps also during file read.

61

Figure 3:
Lazy Open

(when data is not in cache)

open()

openret 0

read()

yield

read

driver server

periodically issuing a flush request from the file
system driver, but in practice there have not been
any problems, so this has not been implemented.

Lazy Open

A typical operation sequence to read a file
is lookup, open, read, close. The results for
lookup and read can be cached at least to some
degree as they are idempotent and we can make
(user-assisted) assumptions about the stability of
the data on the server. Open and close are differ-
ent, as they change state on the file server and
therefore cannot be cached. If the file content is
cached locally, waiting for the opened file handle
from the server is unnecessary, as it will not be
used for serving data from the local cache. This
can be a problem especially over slow links with
hundreds of kilobytes of outstanding requests � it
will take sev eral seconds for the response from
the server to be received.

This can be solved by lazily waiting for the
file handle. The driver’s open method sends a
request to open a file handle, but returns immedi-
ately. Only if a read or write is actually issued,
the file handle is waited for. This way data can be
immediately served from the local cache if it is
available. When implementing this scheme, care
must be taken to handle open and close properly.
The file might be closed (and reopened) before
the original open request from the server returns,
so state must be maintained to decide if a
response to an open request should prompt clos-
ing the handle immediately.

Unix Open File Removal

An example user of inactive in the kernel is
the Unix file removal semantics, which state that
ev en after all links to a file are removed from the
file system directory namespace, the file will con-
tinue to be valid as long as there are open refer-
ences to it. A removed file will actually be
removed only when inactive is called.

NFS client implementations on Unix sys-
tems feature the silly rename scheme, whereupon
if a file is removed from a client host while it is
still in use, the NFS client renames the file to a
temporary name instead of deleting it. For exam-
ple, 4.4BSD uses the name .nfsAxxxx4.4 [16].
When the open file is finally closed, the inactive
routine is called and the renamed file is removed.
This scheme is due to the statelessness of the NFS
protocol and has four problems.

1. If the client crashes between rename and the
call to inactive, the renamed file is left dan-
gling [1].

2. The file is still accessible through the file sys-
tem namespace, although by a different name.

3. If another client removes the file, this scheme
does not work.

4. Empty directories with silly renamed files are
unremovable until the files have been closed.

A file handle’s usefulness in dealing with
the Unix open file semantics depends on file sys-
tem protocol. In NFS, file handles are stateless;
they are not explicitly opened and closed making
it clear they cannot support this kind of behavior.
The ssh sftp protocol uses file handles which are
opened or closed, but the protocol specification
[10] says that stateless or stateful operation is up
to the server implementation. However, upon
examination at least the OpenSSH sftpd supports
the semantics we desire. The 9P protocol specifi-
cation [11] leaves it open to the implementation
and states that Plan 9 itself will not allow to
access a removed file while implementations such
as the Unix server u9fs will allow it.

While a file system driver should transpar-
ently support the semantics local to the system it
runs on, such effort has not yet been made with
puffs and the distributed file system drivers
described in this document. They will work cor-
rectly with some servers and fail with others. As
distributed and local semantics can never truly
fully match, we do not consider this a big prob-
lem. If it is considered a problem, a silly rename
scheme can be implemented.

62

4. Framework

Next, an abstract framework for implement-
ing distributed file systems [18] is presented. The
following properties of the framework are dis-
cussed:

• A buffering scheme for allocating memory for
protocol data units (PDUs) and matching
incoming buffers as responses to sent requests.

• Routines for cooperating multitasking, which
handle scheduling automatically for file sys-
tems using the framework.

• An I/O descriptor subsystem, which allows to
supply the framework with file descriptors
used for data transfers.

• An event loop which reads incoming data from
the I/O descriptors and the kernel, dispatches
requests and writes outgoing data.

To use the framework, the file system driver
must register callbacks which handle the driver
semantics. An overview is presented here and
each callback is later discussed in more detail.

readframe
Read a complete frame from the network into
the buffer provided by the framework.

writeframe
Write a complete frame. A buffer given by the
framework is used as the source for data.

framecmp
Compare two frames to see if the one is the
response to another.

gotframe
Called for incoming frames which are deter-
mined to not be responses to outstanding
requests.

fdnotify
Notify the file system driver of changes the
framework detected in I/O descriptor state.

4.1. Buffering

Sending and receiving traffic over the net-
work requires buffers which host the contents of
the protocol data units (PDUs). While the con-
tents of a PDU are specific to the file system, the
necessity of allocating and freeing memory for
this purpose is generic.

For the purpose of memory management,
puffs provides routines to store data in automati-
cally resizing buffer: the puffs framebuffers [18],
puffs_framebuf. In addition to automatic memory
allocation, the buffering routines provide a
read/write cursor, seeking ability, maximum

written data offset and remaining size. When
writing to a buffer it is possible to write as much
data as there is available memory, but reading
from the buffer will fail for locations beyond the
maximum written data offset.

Additionally, the buffer supports opening a
direct memory window to it. This is useful espe-
cially when reading or writing the buffer to or
from the I/O file descriptor, because it avoids hav-
ing to copy the data to a temporary buffer. As the
framework does not know if data is being read or
written in the window, the maximum size is also
increased to the maximum mapped offset. There-
fore, readers of the buffer should only map the
buffer size’s worth.

For processing the buffer contents, file sys-
tems typically want to add another layer which
understands the contents of the buffer. For exam-
ple, fs_buf_write4() would write 4 bytes of
data into the buffer using puffs_framebuf routines
after adjusting the byte order if necessary. Simi-
larly, fs_buf_readstr() would read a string
from the buffer using the protocol to determine
the length of a string at the current cursor posi-
tion. For example, for a protocol with "Pascal
style" strings, the routine would first read n bytes
to determine the string length and after that read
the actual string data.

4.2. Multitasking

As mentioned in the puffs introduction ear-
lier in Chapter 2, puffs implements its own multi-
tasking mechanism without relying on platform
thread scheduling. This means that in addition to
not requiring any data structure synchronization
calls in the file system driver4, resource sharing
can be better implemented and taken into account
by the framework.

Commonly, threaded programs rely on
implicit scheduling and contain local state in the
stack. If a threaded program executes a blocking
call, another thread is scheduled by the thread
scheduler. The blocked thread is released when
the blocking call completes. However, for distrib-
uted file systems the resource upon which block-
ing calls are made is the shared network connec-
tion, and therefore pure implicit state manage-
ment will not do: received data must be mapped
to the caller and additional state management is
required. The puffs framebuf framework takes
care of this state management and automatically

4 Unless the driver chooses to create threads on
its own, of course.

63

schedules execution where required, therefore
making the task of file system implementation
easier.

The points to suspend execution of a
request are when a request is queued for network
transmission. The framework automatically
resumes the suspended request when the response
has been read from the network. This functional-
ity is discussed more later in the chapter "I/O
Interface".

4.3. I/O File Descriptor Management

By default the framework is interested in
the file descriptor which communicates puffs
operations between the kernel and userspace. If
the file system driver wishes the framework to lis-
ten to other descriptors, it must register descrip-
tors using the puffs_framev_addfd() call.
This can happen either when the file system driver
is started or at any point during runtime. The
prior is a likely scenario for client-server file sys-
tems after having contacted the file system server,
while the latter applies with peer-to-peer file sys-
tems as new peers are discovered. Conversely,
descriptors can be removed at any point during
execution. This releases buffers associated with
them, incoming and outgoing, and returns an error
to blocked operations allowing them to run to
completion.

I/O file descriptors have two modes:
enabled and disabled. A disabled file descriptor
will not produce any read or write events and
therefore the callbacks will not get executed. The
difference between disabling a descriptor and
removing it is that disabling leaves the buffers
associated with the I/O descriptor, incoming and
outgoing, intact. This is useful for example in
cases where the protocol has a separate data chan-
nel and the file system driver wishes to read data
from it only when a VFS read request has been
issued (see Chapter 4.6).

In addition to descriptor removal by the file
system driver, the the framework must deal with
abruptly closed connections. This means that it
must provide the file system driver a notification
when it detects an error condition with a descrip-
tor. The fdnotify() callback is used for this
purpose. As it is legal to half-close a file descrip-
tor and still use the other side [19], the framework
must track and notify the file system driver sepa-
rately of the closing of either side. Similarly to
file system driver initiated descriptor removal, the
framework automatically releases all blocked

waits and flags them with an error also in this
case.

Once a descriptor is closed, certain condi-
tions are imposed by the framework. It is not pos-
sible to write to a descriptor with the write side
closed and attempting to do so immediately
returns an error. Howev er, if only the read side is
closed, it is still possible to write to a file descrip-
tor but waiting for the result is not allowed. The
file system driver can further decide if this is a
sensible condition in the fdnotify() callback.
It also has the option of just giving up completely
on a file descriptor when it receives the notifica-
tion of either direction closing.

4.4. I/O Interface

Each file descriptor has its own send queue.
A PDU can be queued for sending using four dif-
ferent routines:

• enqueue_cc: yield the current execution con-
text until a response is received after which
continue execution.

• enqueue_cb: do not yield. instead, a callback
function, a pointer to which is given as a
parameter, will be called from the eventloop
context when the response is received.

• enqueue_justsend: just enqueue and do not
yield. A parameter controls whether or not a
response is expected. This is required to dif-
ferentiate between a response and a request
from the file server. Howev er, the contents of
the possible response are discarded.

• enqueue_directsend: yield until the buffer has
been sent. Does not assume a response.

As the framework is completely protocol
agnostic, it delegates the job of reading and writ-
ing frames to and from the descriptor to the file
system driver via the readframe() and
writeframe() callbacks. Readframe is called
for incoming data while writeframe is used to
transmit buffers in the send queues. As these rou-
tines are in the file system driver and can examine
the buffer contents, they also know when a com-
plete PDU was received or written. They signal
this information back to the framework.

Of the above enqueueing routines, the first
three require the ability to match an incoming
response to a request sent earlier. The
framecmp() callback provided by the file system
driver is used for this. Once a complete frame has
been read from the network, all the outstanding
requests for the descriptor the frame was read

64

from are iterated over. As requests typically
arrive in-order and even for a very busy file sys-
tem the maximum number of outstanding requests
is typically tens, the linear scan is cheap. Once
the original request for the newly arrived response
is located, execution is resumed.

If no matching request for the frame is
found, the gotframe() callback is called. If the
callback does not exist, the frame is dropped.

In case the comparison routine can deter-
mine from the incoming frame under examination
that it is not a response at all, it can set a flag to
short-circuit the iteration. This avoids going
through all outstanding requests in cases where it
is evident that the incoming frame is a request
from the server and not a response to any of the
file system driver’s requests.

4.5. Event loop

Finally, the event loop is discussed. It is the
driving force behind file system driver operation
and dispatches handlers for requests and
responses as they come in.

The event loop, puffs_mainloop(),
provided by libpuffs is a generalized version of
the event loop first used directly in the psshfs file
system [8]. Initially psshfs and 9puffs had their
own event loops due to the standard libpuffs event
loop lacking the features to support a distributed
file system. However, as the framework was cre-
ated the event loop was enhanced so that distrib-
uted file systems can use it. This new version is
presented as a diagram in Figure 4 and as pseu-
docode in Figure 5.

Each file system driver can specify a "loop
function". This is a simple callback which is
called once every loop. Single-threaded file
servers can use it for tasks which need to be
executed periodically. If the loop function needs
periodical execution, maximum blocking time for
the async I/O multiplexor in the event loop can be
set using puffs_ml_settimeout(). While
not realtime quality, this timeout is fairly accurate
for correctly implemented file system drivers until
very high loads.

For enabled descriptors, read polling is
always active. Write polling is enabled only
selectively, as otherwise the write event would
always trigger. Its enable and disable in the event
loop depend on the previous status and if there is
data in the queue. Also, since the common case is
that all enqueued data can be written immediately,
the event loop attempts to write enqueued data

Figure 4:
Event Loop

ev ent
loop

network /
kernel
output

network /
kernel
input

executing
operation

waiting op

waiting op

...

read cbwrite cb

continue

continue()

yield()

handle()

enqueue

before enabling write polling for a certain
descriptor. Only if all data cannot be written,
write polling is enabled.

The I/O multiplexor kevent() system call
uses the kqueue [20] event notification mecha-
nism. It operates similarly to poll() and
select(), but is a stateful interface which does
not require the full set of descriptors under sur-
veillance to be communicated to the kernel in
each call. However, changes can be made simul-
taneously to event query, and the event loop uses
this to change the status of write polling when
necessary.

4.6. Other Uses: The Portal File System

Distributed file systems are not the only
application for the puffs buffering and event
framework. Another example for the use of such
a framework was found in the reimplementation
of the portal file system [21] using puffs.

The portal file system is a 4.4BSD file sys-
tem which provides some support for userspace
file systems. It does not, strictly speaking, imple-
ment a file system, but relies on a provider to
open a file descriptor, which is then passed to the
calling process. What happens is that a process
opening the file /p/a/file will receive a file
descriptor as the result of the open operation and
is in most cases not able to distinguish between an
actual file system backing the file descriptor. A
configuration file specifies which provider the
portal daemon executes for which path.

65

Figure 5:
Event Loop Pseudocode

while (mounted) {

fs->loopfunc();

foreach (fd_set) {

if (has_output)

write();

}

foreach (fd_need_writechange) {

if (needs_write && !in_set)

add_writeset();

if (!needs_write && in_set)

rm_writeset();

}

kevent();

foreach (kevent_result) {

if (read)

input();

if (write)

output();

}

}

To facilitate this type of action, the original
portal file system passes a pathname to the
userspace portal daemon as part of the open
method. Upon receiving a request, the daemon
fork()s, lets the child take care of servicing the
request, and listens to more input from the kernel.
After the child has opened the file descriptor, it
communicates the result back to the kernel. The
kernel then transfers this descriptor to the calling
process. The child process exits, but depending
on the type of provider it might have spawned
some handlers e.g. using popen(). Other types,
such as TCP sockets, require no backing process.

The puffs portal file system driver behaves
toward applications exactly like the old portal file
system and even reuses most of the code of the
original portald userspace implementation. How-
ev er, puffs portalfs operates like a real file system
in the sense that the file system driver interprets
all the requests instead of a file descriptor being
passed to a caller.

The problem in using original portald code
is that the portal providers can execute arbitrary
blocking sequences, and allowing one to execute

in the context of the file server blocks the access
to other files. This can be avoided by either mul-
tiple processes or multiple threads. The original
portald code we use relies on processes for
cleanup in some cases, such as cleaning up after
popen(), so processes were chosen.

Operation of the new portal file system
driver is as follows. When the file system open
method is called, the file system driver opens a
socketpair and forks off a child process. The
driver then yields after enabling the child socket
descriptor as a valid I/O descriptor. Meanwhile,
the child proceeds to open a file descriptor and
sends it to file server using descriptor passing5.
After receiving the descriptor the file system
driver returns success to the process calling open.

Read and write calls require asynchronous
I/O for the file system driver to support concur-
rent access properly. As opposed to psshfs and
9puffs, the descriptors produced by the portal dae-
mon are enabled for reading only when an incom-
ing read request arrives from the kernel. This way
data is consumed from the descriptor only when
there is a read request active.

The read request uses the framework’s
directreceive routine for receiving data in which
the file system driver supplies the buffer to receive
data to without having to get it via gotframe().
By threading the number of bytes the kernel
wishes to read from the file to the readframe rou-
tine using the buffer, the driver can also avoid
reading too much data. Reading too much data
would result in having to store it for the next read
call.

The reimplementation performs better in
some cases. Since puffs calls are interruptible, the
calling processes can interrupt operations. The
original portalfs implementation had a problem
that if the open call on portalfs blocked, the call-
ing process could not be interrupted. An example
is an unreachable but not rejected network con-
nection, which will stall until the connect() sys-
tem call of the portald provider child times out.
As a downside for this implementation, calls now
need to traverse the user-kernel boundary three
times instead of operating directly on the file
descriptor in the calling process. However, as
portalfs is rarely, if ever, used in speed-critical
scenarios, this does not constitute a problem.

5 Another option would be to issue a version of
fork() which shares the descriptor table between the
parent and the child, but some form of wakeup from
the child to the parent is required in any case.

66

4.7. Other Uses: Kernel VFS Communication

If we return to Figures 1 and 2, we notice
that the situation between the file server and and
kernel virtual file system is symmetric: both are
used by the file system driver through a communi-
cation protocol. After writing the framework,
kernel communication could be adopted to use it
instead of requiring special-purpose code. All
incoming requests from the kernel are treated as
gotframe and are dispatched by the library to
the correct driver method. Using the framework
for kernel communication also enables forward-
ing the puffs protocol to remote sites just by
adding logic to route PDUs.

Not all communication in the file system is
originated by the kernel. For example, the file
system driver can request the kernel to flush or
invalidate its caches. In this case a request is send
to the kernel. As the response to the request is not
immediate, it must be waited for. By treating the
kernel virtual file system just as another file
server, the framework readily handles yielding the
caller, processing other file system I/O mean-
while, and rescheduling the caller back when the
response arrives. This scheme also works inde-
pendent of if the kernel virtual file system is on
the local machine or a remote site.

5. Comparisons

This section presents three comparative
studies for the framework. The first one compares
implementation code size before and after the
framework was introduced. The second measures
performance between userspace file system driv-
ers and the in-kernel NFS. Finally, a feature and
usage comparison between psshfs and NFS is pre-
sented.

5.1. Code Size Comparison

Originally, both psshfs and 9puffs were
implemented with their own specific buffering
routines and event loop. These routines were first
written when developing psshfs and were adapted
to 9puffs with some changes.

Figure 6 (NFS included for comparison)
shows that two thirds of the code used for net-
working and buffering could be removed with the
introduction of the framework; what was left is
the portion dealing with the file system protocol.
As a purely non-measurable observation, the code
abstracted into the framework is the most difficult
and error-prone code in the file system driver.

Figure 6:
Code Size Comparison

total lines of code

before after save (%)

psshfs 2885 2503 11%
9puffs 2601 2140 18%
NFS 24286 n/a n/a

code involved in events / networking / buffering

before after save (%)

psshfs 355 119 66%
9puffs 411 150 64%

Building packets is done by linear construction
code while parsing is the reverse operation. On
the other hand, the network scheduling code and
ev ent loop depends on timings and the order in
which events happen. Moreover, the data struc-
tures required to hook this into the puffs multi-
tasking framework are not obvious. With the net-
working framework the file system driver author
does not need to worry about these details and can
concentrate on the essential part: how to do proto-
col translation to make the kernel virtual file sys-
tem protocol and the file server talk to each other.

5.2. Directory Traversal

In this section we explore the performance
of a file system driver and issues with the file sys-
tem protocol when executing the commonplace
Unix long listing: ls -l.

The command ls -l is characterized by
three different VFS operations. First, the direc-
tory is read using readdir. Second, the node for
each directory entry is located using the lookup
operation. Finally, the node attributes for the ls
long listing are fetched using the getattr opera-
tion. These operations map a bit differently
depending on the file system protocol. For exam-
ple, on NFSv3 the readdir operation causes an
NFS_READDIR RPC to be issued. For each
lookup, NFS_LOOKUP procedures are issued.
Since the NFS_LOOKUP operation response also
contains the node attributes, they are cached in the
file system when getattr is called and no network
I/O will be required for satisfying the request.

As discussed already in Chapter 3.2, the
bottleneck in the above is the serial nature of the
process: one operation must complete before the

67

Figure 7:

ls �lR Duration

sshfs,
compression

NFS

se
co

nd
s

0

10

20

30

40

11.2

33.99

1.01 0.27

Slow net Fast net

ls �lR, individual getattr

sshfs,
compression

NFS

se
co

nd
s

0

25

50

75

100

125

150

175

200
175

158

2.34 0.86

Slow net Fast net

next is issued. NFS solved this by introducing the
NFS_READDIRPLUS procedure in protocol ver-
sion 3. It returns the attributes for all the nodes in
the readdir response. That way the file system
driver will already have the information for
lookup/getattr cached when it is requested. How-
ev er, this information might well be wasted, since
readdir is acting only opportunistically. Even fur-
ther, as the BSD NFS implementation creates a
new vnode for each previously non-existing one
(to cache the attribute information in), listing a
directory might prompt valid vnodes to be recy-
cled. This is why the use of NFS_READ-
DIRPLUS is disabled by default and recom-
mended only for high latency mounts.

The sftp (and 9P) protocol always includes
the attribute information in readdir responses.
Our implementation differs from the kernel ver-
sion in such a fashion that we cache the attributes
and the directory read results in the directory
structure; not new nodes. Therefore this solution
does not force kernel vnodes to be recycled �

Figure 8:

Data transferred in ls �lR

sshfs,
comp

sshfs,
no comp

NFS

D
at

a
(k

B
)

0

128

256

384

512

640

768

896

1024

Incoming Outgoing

Transfer Speed, 100Mbit/s net

9puffs NFS

S
pe

ed
 (

kB
/s

)

0

2048

4096

6144

8192

10240

12288

10181 10580

Rate

although it could not do so even if it wanted to, as
vnode life cycles are completely controlled by the
kernel in puffs.

The ls -lR measurements are for the
time it takes to traverse a directory hierarchy with
around 4000 files. The initial measurements were
done over a 11Mbps wireless link with a 3ms
RTT. These results results showed the psshfs was
faster than NFS � a result quite unexpected. The
cause was discovered to be the bandwidth use, so
another measurement was done with the ssh com-
pression option being on (default compression
level). This improved results even further. Tech-
nically it is possible to compress the NFS traffic
also using the IP Payload Compression Protocol
(IPComp), but doing so is multiple times more
difficult than using the ssh compression option
and the effects of doing so were not investigated.

The measurements presented in Figure 7
contain both the duration for the operations on a
high-latency, low bandwidth link and a low-
latency high bandwidth local area network.

68

Performance is measured both for coalesced
getattrs and individual ones. NFS is mounted
using a TCP mount. Apart from compression,
psshfs is used with OpenSSH default options.

For the preloaded attributes case, it is easy
to see that psshfs wins on the slower network
because it requires much less data to be trans-
ferred. However, on the high speed network the
performance penalty inherent in multiple context
switches per operation is evident. Even though
latency is canceled for the link by using attribute
preloading, the psshfs file system server must still
getattr each file using individual system calls
when the NFS server can simply perform these
operations inside the kernel without context
switch penalty. Additionally, psshfs must encrypt
and decrypt the data. Finally, we do not control
the sftp server and cannot optimize it.

Without preloading attributes ("individual
getattr") NFS dominates because the operation
becomes driven by latency, and NFS as a kernel
file system has a smaller latency.

5.3. Data transfer

To measure raw data transfer speeds, large
files were read sequentially over a local area net-
work using both NFS and 9puffs6. The results are
hardly surprising, as reading large files uses read-
ahead heuristics. Data requested by the applica-
tion has already been read into the page cache by
the read-ahead code and can be delivered to the
application instantly without consulting the file
system server. It should be noted, though, that the
userspace model uses more CPU and on fast net-
works such as 10GigE, the performance of the
userspace model may be CPU-bound.

5.4. psshfs vs. NFS

As NFS and psshfs are roughly equivalent
in performance, it is valid to question which one
should be preferred in use. The following section
lists reasons NOT to use the protocol in question:

psshfs:

• No support for hard links. Tw o hard-linked
directory entries will be treated as two files.

• No support for devices, sockets or fifos.

• No support for user credentials in the protocol:
one mount is always one set of credentials at
the server end.

6 psshfs was attempted first, but the CPU require-
ments for the encryption capped out the CPU of the
server machine.

• No support for an async I/O model: there is no
certainty if written data is committed to disk.

NFS:

• Setup is usually a heavyweight operation
meaning the protocol cannot be used without
considerable admin effort.

• It is difficult, although entirely possible, to
make the protocol operate from a remote loca-
tion through IPSec tunnels.

• There is no real security model in the currently
dominant NFSv3 version.

6. Conclusions and Future Work

This paper explored implementing distrib-
uted file system drivers in userspace on top of the
puffs Pass-to-Userspace Framework File System.
It explained concepts relevant to implementing
distributed file systems and pointed out unex-
pected pitfalls.

A framework for implementing distributed
file systems was presented. The I/O file descrip-
tors, callbacks, continuations and memory buffers
were discussed and interfacing with them from
the file system driver was explained.

The performance characteristics of
userspace file system drivers and userspace file
systems was lightly measured and analyzed. The
conclusion was that even though in-kernel file
systems usually perform better, userspace file sys-
tems can shrink the gap by the possibilities in a
more flexible programming environment.

Future work includes implementing a peer-
to-peer file system on top of the framework.
Notably though, the portal file system implemen-
tation briefly mentioned in this paper already
shares some similar characteristics to peer-to-peer
file systems in that it communicates using multi-
ple I/O descriptors concurrently.

As distributed file systems have a high price
to pay for reloading information from the server,
the information should be cached as much as pos-
sible. File data is cached effectively in the kernel
page cache, although a file system driver wanting
a persistent cache will have to implement it by
itself. However, metadata caching is currently
completely up to the file system driver. This
could be improved in the future by providing a
method for caching metadata.

Related to metadata caching is the observa-
tion that the optimal way to perform directory
reading and lookup is a similar procedure in both

69

of the distributed file systems we went over in this
paper. The procedure should be generalized for
any file system driver. This includes attribute
caching for directory entries along with optionally
preloading the attributes even though the file sys-
tem protocol does not directly support it.

Av ailability

All of the code discussed in this paper is
available for download and use in the develop-
ment branch of the NetBSD [7] operating system.
This development branch will eventually become
the NetBSD 5.0 release.

For information on how to download the
code in source form or as a binary release, please
see http://www.NetBSD.org/. Documentation for
enabling and using the code is available at
http://www.NetBSD.org/docs/puffs/

Acknowledgments

This work was funded by the Finnish Cul-
tural Foundation and the Research Foundation of
Helsinki University of Technology. Karl Jenkin-
son provided helpful comments.

References

1. Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon,
Design and Implementation of the Sun Net-
work Filesystem, pp. 119-130, Summer
1985 USENIX Conference (1985).

2. Christopher Hertel, Implementing CIFS:
The Common Internet File System, Prentice
Hall (2003). ISBN: 978-0-13-047116-1.

3. Athicha Muthitacharoen, Robert Morris,
Thomer M. Gil, and Benjie Chen, Ivy: A
Read/Write Peer-to-peer File System, Fifth
Symposium on Operating Systems Design
and Implementation (December 2002).

4. J-M. Busca, F. Picconi, and P. Sens, Pastis:
A Highly-Scalable Multi-User Peer-to-Peer
File System, Euro-Par 2005 (2005).

5. Michael Accetta, Robert Baron, William
Bolosky, David Golub, Richard Rashid,
Av adis Tevanian, and Michael Young,
Mach: A New Kernel Foundation for UNIX
Development, pp. 93-113, Summer
USENIX Conference (1986).

6. Miklos Szeredi, Filesystem in USErspace,
http://fuse.sourceforge.net/ (referenced Jan-
uary 2008).

7. The NetBSD Project, The NetBSD Operat-
ing System. http://www.NetBSD.org/.

8. Antti Kantee, puffs - Pass-to-Userspace
Fr amework File System, pp. 29-42, AsiaBS-
DCon 2007 (March 2007).

9. Yousef A. Khalidi, Vlada Matena, and Ken
Shirriff, “Solaris MC File System Frame-
work,” TR-96-57, Sun Microsystems Labo-
ratories (1996).

10. T. Ylönen and S. Lehtinen, SSH File Trans-
fer Protocol draft 02, Internet-Draft (Octo-
ber 2001).

11. Bell Labs, “Plan 9 File Protocol, 9P,” Plan
9 Manual.

12. puffs -- Pass-to-Userspace Framework File
System development interface (January
2008). NetBSD Library Functions Manual.

13. S. R. Kleiman, Vnodes: An Architecture for
Multiple File System Types in Sun UNIX,
pp. 238-247, Summer Usenix Conference,
Atlanta, GA (1986).

14. Sun Microsystems, Inc., RPC: Remote Pro-
cedure Call Protocol Specification Version
2, RFC 1057 (June 1988).

15. Rick Macklem, The 4.4BSD NFS Imple-
mentation, The 4.4BSD System Manager’s
Manual (1993).

16. Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels, and John S. Quarterman,
Design and Implementation of the 4.4BSD
Operating System, Addison-Wesley (1996).

17. Randall Stewart and Chris Metz, “SCTP:
New Transport Protocol for TCP/IP,” IEEE
Internet Computing, Volume 5, Issue 6, pp.
64-69 (2001).

18. puffs_framebuf -- buffering and event han-
dling for networked file systems (January
2008). NetBSD Library Functions Manual.

19. W. Richard Stevens, UNIX Network Pro-
gramming, Volume 1, Second Edition: Net-
working APIs: Sockets and XTI, Prentice
Hall (1998). ISBN 0-13-490012-X.

20. Jonathan Lemon, Kqueue: A Generic and
Scalable Event Notification Facility, pp.
141-154, USENIX 2001 Annual Technical
Conference, FREENIX Track (June 2001).

21. W. Richard Stevens and Jan-Simon Pendry,
Portals in 4.4BSD, USENIX Technical
Conference (1995).

70

Logical Resource Isolation in the NetBSD Kernel

Kristaps Džonsons
Swedish Royal Institute of Technology, Centre for Parallel Computing

kristaps@kth.se

Abstract

Resource isolation is a strategy of multiplicity, the
state of many isolated contexts within a parent
context. Isolated resource contexts have func-
tionally non-isomorphic resource mappings: con-
texts with equivalent domain identities map to
non-intersecting ranges in the resource co-domain.
Thus, in practise, if processes a and b return dif-
ferent values to an equivalent identity (say, for the
hostname), then the callee context, for this iden-
tity, demonstrates resource non-isomorphism. Al-
though isolation is by no means a new study in
operating systems, the BSD family offers few im-
plementations, at this time limited to FreeBSD’s
Jail and, potentially, the kauth(9) subsystem in
NetBSD. These systems provide a framework with
which one may construct isolated environments by
cross-checking and switching over credentials at the
kernel’s boundary. In this document, we consider
a radically different approach to resource isola-
tion: instead of isolating at the kernel boundary,
we consider a strategy of collecting entire kernel
sub-systems into contexts, effecting bottom-up re-
source isolation. This document describes a work-
in-progress, although a considerable implementa-
tion exists1.

1 Introduction

Resource isolation may strictly be defined as a
non-isomorphic mapping between unique resource
identities (the domain) and mapped entities (co-
domain): multiple contexts, with the same domain
identity, mapping to non-conflicting range entities.
Instead of a single, global task context, where all

1See http://mult.bsd.lv

tasks have a common mapping, resource isolation
implies a set of contexts, with set members defined
by the commonality of their mapping function. Our
use of the term resource, in this regard, refers to
mutable entities.

In practise, resource isolation provides Unix pro-
cesses (“tasks”) a different view of their environ-
ment depending upon the context. For example,
a particular process a, if isolated, may only view
processes in its calling context A, while another
process, b, can only see processes in its context B.
The contexts A and B are non-overlapping; in other
words, no process in A can see into B and vice-
versa. Conventional Unix environments, contrarily,
are non-isolated (or isolated to a single context).

In this document, we use set notation to describe
tasks and resources. We define a mapping function
f to accept a resource identity x and produce an
entity y. The set of resources available to a task is
f(x0) . . . f(xn), or, equivalently, y0 . . . yn mapped
from x0 . . . xn. Resource isolation implies a set F =
{f0 . . . fk}, where the ranges of any two fi are non-
overlapping. Thus, in a traditional Unix system
with a single, global resource context, F = {f0}.
This single context f0 has an equivalent range and
co-domain.

We consider each f to be a black-box within the
kernel, and F defines the kernel proper. In practise,
this decomposes into each f ∈ F having a unique
identifying credential; two resource requests, for ex-
ample, for the hostname, correspond to a single fi

in the case of a single-context environment, and fi

and fj in a multiplicity environment. We consider
“resources” in the broad sense as system calls or in
the fine sense as system calls combined with par-
ticular arguments.

The complexity of our example isolation scenario

71

is considerable: there are many elements entangled
in a process. In order to be isolated, the set of con-
texts must be injective; in other words, a co-domain
entity may be mapped from only one domain iden-
tity. A process abstracts considerable complexity:
a process is composed of memory maps, file de-
scriptors, resource limits, and so on. To isolate one
process from another, all non-injective conditions
must be removed. For example, although process a
may not be able to signal process b, it may try to
affect it by changing resource limits, or manipulat-
ing the controlling user. If any of these resources
conflict, then isolation is not maintained. We call
these conditions resource conflicts.

A resource conflict may be effected both directly
and indirectly. In the former case, a breach could
occur if a were able to signal b using a non-standard
signalling interface (through, e.g., emulated system
calls that bypass the isolation mechanism). In the
latter case, improperly isolated user checks could
allow a to affect b by changing user resource limits.
Since f(xj) = yc and f ′(xj) = yc, the system is no
longer isolated.

In this document, we’ll propose a system that im-
plements resource isolation in order to provide effi-
cient multiplicity without sacrificing elegance. Be-
fore discussing the methods of this system, we’ll
consider the reason for its implementation; in other
words, why we chose to implement a new design
instead of re-using existing systems. In order to
properly discuss these systems, we’ll introduce an
informal taxonomy for multiplicity systems.

2 Terminology

In this section, we refine our introductory notation.
Since multiplicity has many different forms, it’s dif-
ficult to introduce a generalised notation that cov-
ers all scenarios. In the previous section, we used
the term context to describe the mapping f ∈ F .
We now introduce the term “operating instance”.

Definition If x is a resource identity (e.g., system
call), and y0 is the entity mapped by f0, with f1

producing y1 where f ∈ F and y ∈ Y , then we
define each f ∈ F as an operating instance in a
multiplicity system if and only if there are no two

fi ∈ F returning the same y for a identity x.

In practise, multiple operating instances in a multi-
plicity system may only exist if there are no conflict
points where fi(x) = fj(x) = y. In the introduc-
tory section, we used the term resource isolation to
define this property; in this section, we introduce
the notion of operating instances as those entities
with isolated resources.

The existence of an operating instance doesn’t nec-
essarily imply instance multiplicity: in a standard
Unix system, there always exists one operating in-
stance. The property of multiplicity arises when
the co-domain Y is completely partitioned into
ranges of f ∈ F , where no y ∈ Y conflict.

Definition A system may claim operating in-
stance multiplicity when there are multiple non-
overlapping ranges in the resource co-domain,
mapped from different f ∈ F .

In this document, we consider only operating in-
stance multiplicity. There are other targets of mul-
tiplicity, like operating system multiplicity, which
will be addressed only in passing.

3 Scenario

There are many scenarios involving multiplicity:
service consolidation, testing, containment, redun-
dancy, and so forth. We choose three common
multiplicity scenarios that, as we’ll see, span the
diapason of multiplicity strategies. It’s important
to stress that this analysis is of operating instance
multiplicity: we disregard, for the moment, scenar-
ios calling for whole operating system multiplicity.
This isn’t the focus of this paper, as many well-
known operating system multiplicity systems exist
for the BSD family.

We’ll primarily focus on a cluster computing envi-
ronment. In this environment, we must allow for
many distinct process trees with isolated resource
contexts, preferably rooted at init(8), all of which
are completely contained from one another. There
must be negligible over-head in the isolation mech-
anism; more importantly, these systems must start

72

and stop extremely quickly, so as to offer fine-
grained scheduling of virtual environments on the
processor. There must be thousands of potential
instances, all, possibly, running simultaneously on
one processor. In an alternate scenario, some in-
stances may have priority over others; some, even
further, may be entirely suspended, then restarted
later. This document focusses largely on the in-
kernel isolation strategy for such a system.

We also consider a virtual hosting environment.
Like in cluster computing, we account for the pos-
sibility of many instances competing for resources.
Unlike in cluster computing, we consider that the
run-time profile for these systems is roughly sim-
ilar; thus, sharing of code-pages is essential. Fur-
ther, while cluster computing stresses the speedy
starting and stopping of instances, virtual hosting
emphasis fine-grained control of resources which are
likely to remain constantly operational to a greater
or lesser extent.

In both of these scenarios, each process must have a
conventional Unix environment at its disposal. We
decompose the term “resource” into soft and hard
resources: a soft resource is serviced by the ker-
nel’s top-half (processes, memory, resource limits,
etc.), while a hard resource is serviced by a physi-
cal device, like a disc or network card. Our scenario
doesn’t explicitly call for isolation between hard re-
sources (we consider this a possibility for future
work); an administrator may decide which devices
to expose by carefully constructing dev nodes.

4 Related Work

At this time, of the BSD operating system fam-
ily, only FreeBSD Jail[3] offers a complete isolation
mechanism. Jail attaches structures to user creden-
tials that define guest contexts within a host con-
text. Guests have a resource range that is a strict
subset of the host; all guests have non-intersecting
ranges while the host’s range is equivalent to the co-
domain (thus, is allowed to conflict with any guest).
FreeBSD Jail structures isolate primarily in terms
of soft resources: the only isolated hard resources
are the network, console, and pseudo-terminal in-
terfaces. The Jail system first appeared in FreeBSD
4.0.

NetBSD 4.0 includes kauth(9)[1], which orches-
trates the secmodel(9) security framework. This
system allows kernel scopes (resource identity cate-
gories) and their associated actions (resource re-
quests) to be examined by a pool of listeners.
Scopes and actions are correlated with calling cre-
dentials and relevant actions are produced. This
doesn’t provide isolation per se, but we can, as-
suming other changes to the infrastructure and an
implementing kernel module, envision a sytem in-
terfacing with kauth(9) to provide in-kernel isola-
tion.

We specifically disregard NetBSD-Xen (and other
full-system virtualisers, including the nascent
DragonFlyBSD vkernel(7)) from our study, as the
memory overhead of maintaining multiple guest im-
ages is considerable and violates our stipulation for
many concurrent contexts. Both of these systems
full into the category of operating system multi-
plicity systems: instead of resource isolation, these
virtualise the hardware context invoked by the gen-
eralised resources of an operating system. The
overhead of this virtualisation is considerable. In
general, we disregard operating system multiplicity
systems (such as QEMU, Xen, and so forth) due to
the high practical overhead of hosting virtualised
images or manipulating them.

Furthermore, we also discard the ptrace(2) and
systrace(2) mechanisms and inheriting isolation
systems. The latter is being deprecated from the
BSD family, while the former (which may suffer
from the same error as the latter) requires con-
siderable execution overhead to orchestrate. The
kauth(8) mechanism, which will be discussed, may
be considered an in-kernel generalisation of these
systems.

Lastly, this document does not consider non-BSD
kernel isolation mechanisms, of which there are
many. Most of these systems are implemented us-
ing strategies equivalent to FreeBSD Jail, enacting
functional cross-checks, or as kauth(9) through se-
curity policies. Linux has several implemented sys-
tems, such as OpenVZ and VServer, and Solaris
has Zones.

73

5 Issues

There are a number of issues with the available sys-
tems. The most significant issue with both avail-
able systems is the strategy of isolation: check-
points within the flow of execution, instead of log-
ically isolating resources in the kernel itself. The
former strategy we call functional resource isola-
tion, which is an isolation during the execution of
conflict points.

In FreeBSD Jail, prisons are generally enforced by
cross-checks at the system call boundary. For in-
stance, a request to kill(2) from process a ∈ A
to b ∈ B (as in our above scenario) is intercepted
and eventually routed to prison check(9) or sim-
ilar function, which checks if the prison contexts
are appropriate. In the Jail system, a host may af-
fect guests, but guests may not affect each other or
the host. Each potential conflict between process
resources must be carefully isolated:

int
prison_check(struct ucred *c1, struct ucred *c2)
{

if (jailed(c1)) {
if (!jailed(c2))

return (ESRCH);
if (c2->cr_prison != c1->cr_prison)

return (ESRCH);
}
return (0);

}

This function, or similar routine, must wrap each
conflict point in order to protect the isolation in-
variant of the instances. In order for this methodol-
ogy to work, each conflict point must be identified
and neutralised. Clearly, as the kernel changes and
new conflict points are added, each must be indi-
vidually addressed.

The kauth(9) system enforces a similar logic.
When kernel execution reaches a fixed arbitration
point, zero or more listeners are notified with a
variable-sized tuple minimally containing the the
caller’s credential and the requested operation (ad-
ditional scope-specific data may also be passed
to the listener). Thus, a signal from a ∈ A
to b ∈ B may be intercepted with operation
KAUTH PROCESS CANSIGNAL, and the listener may
appropriately allow or deny based on the involved
credentials.

The Jail system, regarding resource isolation, has
a considerable edge over kauth(9): the kauth(9)
framework does not provide any sort of internal
identification of contexts. A practical example fol-
lows: if one wishes to provide multiple Unix envi-
ronments, there’s no way to differentiate between
multiple “root” users. kauth(9) listeners receive
only notice of user and group credentials, and has
no logic to pool credentials into a authentication
group. This considerably limits the effectiveness of
the subsystem; however, it’s not an insurmountable
challenge to modify the implementation to recog-
nise context, although instance process trees would
not be rootable under init(8).

Although FreeBSD Jail does have an in-kernel par-
tition of resources, the implementation falls short of
full partitioning. Each credential, if jailed, is asso-
ciated with a struct prison with a unique identi-
fier. When a request arrives to the kernel on behalf
of an imprisoned process, the task credentials have
the standard Unix credentials and also an associ-
ated prison identifier. This allows conflicting user
identifiers to be collected into prisons.

Our issue with both systems is the strategy by
which isolation is enforced: functional isolation,
where every point of conflict must be individually
resolved. This is flawed security model, where in
order to guarantee isolation, one must demonstrate
the integrity of every single conflict point. Since
some conflict points are indirect, this is often very
tricky, or outright impossible. A cursory investi-
gation of the sysctl(3) interface reveals that the
hostid of the host system may be set by guests. Al-
though this may be deliberate, the onus is on the
developer to ensure that all conflicts are resolved;
or if they are not, to provide an explanation.

6 Proposal

We consider an alternative approach to isolation
that provides a priori isolation of kernel resources:
logical isolation. Instead, for example, of cross-
checking the credentials of process a ∈ A signalling
b ∈ B, we guarantee A ∩ B = Ø by collecting re-
source pools into the resource context structures
themselves. In other words, the system resources
themselves are collected within contexts, instead

74

of requiring functional arbitration. Although this
strategy is considerably more complicated to ini-
tially develop, the onus of meticulous entry-point
checking is lifted from the kernel.

First, our method calls for a means of context iden-
tification. Like with Jail, we associate each creden-
tial with a context; in this document, we refer to
this structure as the instance structure. Instance
structures have one allocation per context and are
maintained by reference counters.

In order to isolate at the broadest level, we comb
through the kernel to find global structures. These
we must either keep global or collect into the in-
stance framework. Some resources, like the host-
name and domainname, are trivial to collect. Oth-
ers, like process tables, are considerably more diffi-
cult. Still others, like network stack entities (rout-
ing tables, etc.) are even more difficult. How-
ever, once these have been appropriately collected,
we’re guaranteed isolation without requiring com-
plex border checks.

Further, we propose a forest of instance trees: in-
stances may either be rooted at init(8) to create
simultaneous, isolated system instances, or instead
branch from existing instances, effectively creating
a host/guest scenario. Child instances introduce
some complexity; however, instead of building a
selective non-injection into our original isolation
model (as in FreeBSD Jail), we manage child in-
stances through a management interface, instead of
the violating our logical model. In practical terms,
instead of issuing kill(1) to a child instance’s pro-
cess, a parent must operate through a management
tool (described in “Implementation”) with default
authority over child operation.

Since the topic of hard resources (devices) is or-
thogonal to isolation as per our described scenario,
we relegate this topic to the “Future Work” sec-
tion of this document. The same applies for the
proposed management interface.

7 Implementation

We focus our implementation on NetBSD 3.1. Our
choice for this basis system was one of cleanli-
ness, simplicity, and speed. FreeBSD proved to

be too complex and already encumbered by the
existing prison mechanism. OpenBSD, while sim-
ple and very well documented, can’t compete with
NetBSD (or FreeBSD) in terms of speed. NetBSD
has proved to have very well-documented with con-
cise code. The speed of the system is acceptable
and the number of available drivers is adequate.
Our choice of basis kernel is still open to change;
the alterations, although extensive, are relatively
portable among similar systems. From NetBSD
we inherit a considerable set of supported architec-
tures. Since this proposal doesn’t affect the kernel’s
bottom-half, our project inherits this functionality.

The existing implementation, which is freely down-
loadable and inherits the license of its parent,
NetBSD, carries the unofficial name “mult”. The
remainder of this document focusses on the design,
implementation, and future work of the “mult” sys-
tem.

7.1 Structure

The system is currently implemented by collect-
ing resources into struct inst structures, which
represent instances (similar to struct prison in
FreeBSD’s jail). Each instance has a single struct
inst object. There are two member classifica-
tions to the instance structure: public and private.
Public members are scoped to the instance struc-
ture itself; private members are anonymous pointer
templates scoped to the implementing source file.
What follows an abbreviated view of this top-most
structure:

struct inst {
uint i_uuid;
uint i_refcnt;
struct simplelock i_lock;
int i_state;
LIST_ENTRY(inst) i_list;

char i_host[MAXHOSTNAMELEN];
char i_domain[MAXHOSTNAMELEN];

inst_acct_t i_acct;
inst_proc_t i_proc;
...

};

In this listing, i host and i domain are public
members: their contents may be manipulated at
any scope. The i acct and i proc members are
private; their types are defined as follows:

75

typedef struct inst_acct *inst_acct_t;
typedef struct inst_proc *inst_proc_t;

The definitions for inst acct and inst proc are
locally scoped to source files kern acct.c and
kern proc.c, respectively. The inst proc struc-
ture is locally scoped with the following members:

struct inst_proc {
uint pid_alloc_lim;
uint pid_alloc_cnt;
struct pid_table *pid_table;
...

};

This structure consists of elements once with global
static scope to the respective source file. The
following is an excerpt from the pre-appropriated
members in the stock NetBSD 3.1 kern proc.c
source file:

static struct pid_table *pid_table;
static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
static uint pid_alloc_lim;
static uint pid_alloc_cnt;

Other private members share similar structure. De-
ciding which non-static members to make private,
versus instance-public, is largely one of impact on
dependent callers throughout the kernel.

At this time, there are a considerable number of
appropriated subsystems with one or both public
and private members: processes, accounting, pipes,
kevents, ktraces, System V interprocess communi-
cation, exit/exec hooks, and several other minor
systems. The procfs pseudo-file-system has been
fully appropriated with significant work on ptyfs
as well. Subsystems are generally brought into in-
stances on-demand, that is, when larger, more sig-
nificant systems must be appropriated.

7.2 Globals

There also exists a global instance context for rou-
tines called from outside a specific calling scope, for
example, scheduling routines called by the system
clock. These may need to iterate over all instances.
The global list of instances may be accessed from a
single list structure allinst, much like the previ-
ous allproc for process scheduling. Instances may

also be queried by identifier, which is assumed to
be unique. This convention is under reconsider-
ation for the sake of scalability and the possibil-
ity of conflicting identifiers with high-speed cycling
through the namespace of available identifiers.

7.3 Locking

Locking is done differently for different services.
Private members often have their own native lock-
ing scheme inherited from the original implementa-
tion. Some public members also inherit the original
locking, most notably the process subsystem, which
has several public members as well as a private
definition. General locking to instance members,
those without a subsystem-defined locking mecha-
nism, occurs with the i lock member of struct
inst. The global instance list has it’s own lock,
appropriate for an interrupt context.

7.4 Life-cycle

Instances are created in a special version of
fork1(9) called forkinst1(9), which spawns an
instance’s basis process from the memory of proc0.
At this time, the instance structure itself is created.
The private members are passed to an appropriate
allocation routine defined for each member; usually,
the memory referenced by these pointers is dynam-
ically allocated.

The life-time of an instance is defined by its refer-
ence count, i refcnt in struct inst. When this
value reaches zero, the instance is cleaned up, with
each private member being passed to a correspond-
ing release routing, and returned to the instance
memory pool. These allocation and deallocation
routines are similar for each instance:

int
inst_proc_alloc(inst_proc_t *, int);

void
inst_proc_free(struct inst *);

The release of an instance’s final process (usually
the instinit(8) or init(8) process) must be spe-
cially handled. In normal systems, processes must
have their resources reclaimed by the parent or

76

init(8) under the assumption that init(8) never
exits (or the system usually panics). This case is
no longer true in our system, thus, a special ker-
nel thread, instdaemon(9), frees the resources of
these special processes. Since kernel threads tradi-
tionally reparent under the init(8) process, and
this process is no longer singular, kernel threads
also are reclaimed by instdaemoe(9).

7.5 Administration

There are several tools available with which one
may interact and administer the instance frame-
work. These interact with the kernel through ei-
ther the sysctl(3) interface or a new system call,
instctl(2). The former is primarily to access in-
formation on the instance framework, while the lat-
ter manipulates it. The instctl(2) function oper-
ates on a single argument, which contains parame-
ters for controlling the instance infrastructure:

int
instctl(const struct instctl *);

The struct instctl structure allows several
modes of control: debugging information, starting
instances, and stopping instances. We anticipate
this structure to grow significantly to account for
other means of control.

There are several implementations of these func-
tions. The instinfo(8) utility lists informa-
tion about instances and the instance framework,
instps(1) is an instance-aware version of ps(1),
and instctl(8) which directly interacts with the
instctl(2) system call.

An alternate init(8) implementation,
instinit(8), is currently used for non-default
instances. This is a temporary measure while the
semantics behind terminal sharing are formalised.
The instinit(8) process acts like init(8)
except that it doesn’t start the multi-user virtual
terminal system. It’s a required process for all
starting instances, i.e., it must exist within the
root file-system in order for the instance to “boot”.

The system for administering instances is still un-
der consideration, and may change. At this time,
we chose simplicity, in this regard, over elegance

and scalability; our focus is on the system’s sta-
bility and design continuity. Administration is a
topic that we wish to re-consider when a signifi-
cant degree of scalability has been achieved, and
the administration of thousands of instances be-
comes necessary.

8 Future Work

The “mult” system has a fairly well-defined short-
term future, with some interesting possibilities for
long-term development.

In the short-term, we anticipate fully appropriat-
ing pseudo-devices into instances. Furthermore,
we envision a system for delegating physical de-
vices to instances in a clean, elegant manner. Al-
though not strictly-speaking a short- or mid-term
goal, optional mid-term work, once the framework
interfaces has been finalised, is to optimise the boot
and shutdown sequence of instances. Lastly, inter-
instance communication and manipulation should
also be added to the control framework divvying
physical resources between instances.

Pseudo-devices require fairly significant considera-
tion. The most important is the network, followed
closely by the terminal. We intend on following
a similar path as the cloneable network stack for
FreeBSD[4], where the entire network stack infras-
tructure is fully brought into instances. Bridges
will allow instances to claim an entire network de-
vice, whose data may be routed to another instance
controlling the physical network interface.

Terminals may be appropriated by dividing be-
tween terminal instances and non-terminal in-
stances, where the former is connected to a real
terminal and the latter runs “head-less”. At this
point, all instances run head-less, i.e., they have
no controlling terminal during boot. This neces-
sitated re-writing init(8) as instinit(8) to skip
multi-user virtual terminal configuration. Each ter-
minal instance would connect to one or more vir-
tual terminals. Obviously, since virtual terminals
are a scarce resource, this will rarely be the case;
however, connecting instances to terminals allows
multiple sets of monitor, keyboard and mouse con-
necting to the same computer and interacting with

77

different instances.

There are a significant number of potential opti-
misations to the instance infrastructure. It’s ab-
solutely necessary that the scheduler and memory
manager account for instance limits, allowing ad-
ministrators to make real-time adjustments to the
scheduling priority of individual instances. The
Linux VServer uses a two-tiered scheduler for its
instance implementation (which uses functional iso-
lation): we envision a similar scenario but with an
emphasis on real-time scheduling. Furthermore, we
plan on introducing a per-subsystem configuration
structure. At this time, each subsystem (processes,
pipes, and so forth) is configured with the system
defaults. By allowing these defaults to be changed,
or disabled entirely, instances may be customised
to their run-time environments.

With a completed isolation environment, we can
begin to consider extending our model to support
hardware. At this time, our model depends on an
administrator to appropriately partition resources
for each instance, much like with FreeBSD Jail.
We envision extending isolation to the device level;
instead of changing device drivers themselves, we
consider an additional layer of logic at shared ar-
eas of abstraction code. Our approach is divided
into two phases. First, we must have a means of
reliably identifying devices; second, we must have
a means to intercept data flow to and from these
devices. Lastly, we must correlate device identity,
operation, and credentials to arbitrate access.

We plan on drawing from the Linux kernel’s udev[2]
strategy to map devices to identifiers. Since the ad-
ministrator will be creating the access module rules,
there must be a means to flexibly label devices as
they’re recognised by the system. This strategy
will involve our considerations of device pseudo-file-
systems, which must be coherent with the notion of
instances. This will govern the exposure of devices
to instances, and considerably narrow the window
of exposure.

Second, we must define arbitration points. These
will most likely occur when requests are brokered
to individual drivers. We plan on drawing on
scope parameters from kauth(9) to find a gener-
alised granularity. Realistically, most device isola-
tion may be solved by an intelligent dev file-system.

Both of these concepts, the device file-system and
arbitration, must work together with the notion of
instances. We propose an access module that arbi-
trates requests for hard resources, and limited in-
teraction between other instance contexts. Since
hard resources may not be logically isolated as may
soft resources (as there’s no natural correlation be-
tween a hard resource and a particular instance),
the onus falls on the administrator to properly map
instances onto devices.

9 Conclusion

In this document, we introduced the theory of iso-
lation and discussed various existing strategies. Af-
ter considering the limitations of these strategies,
we proposed a new one. Our new strategy is not
without its caveats: since the necessary altercations
span the kernel diapason, keeping these sources
synchronised with the origin kernel is a difficult
task. However, since our changes primarily affect
the kernel top-half, we believe that our sacrifice is
warranted; we can still inherit additional drivers
and sub-system changes from the main-line.

10 Acknowledgements

We’d like to thank the University of Latvia’s Insti-
tute of Mathematics and Computer Science, where
the system began development. Special thanks to
the BSD.lv Project for its initial funding of the
work, and a special thanks to Maikls Deksters for
his support and contributions. Lastly, thanks to
the Swedish Royal Institute of Technology’s Centre
for Parallel Computing for their continued support
of this project.

References

[1] EuroBSDCon. NetBSD Security Enhanceme-
nents, 2006.

[2] Greg Kroah-Hartman. udev: A userspace im-
plementation of devfs. In Proceedings of the
Linux Symposium, July 2003.

78

[3] SANE 2nd International Conference. Jail: Con-
fining the Omnipotent Root, 2000.

[4] Marco Zec. Implementing a clonable network
stack in the freebsd kernel. In USENIX Annual
Technical Conference, FREENIX Track, 2003.

79

80

����
�����	
��

��
�
�����

��

�������������������
������
����� !
"#

AsiaBSDCon
Tokyo, 2008

History
��
$�������	
�%��!
��	�
�
������
�����

�
������& '
���%�(�%��
����)��$��
����!��!
����)��*+�*
��	�
�
��!%%�
������
�$�,,-�.''.

81

Nomenclature
��������/��������!	�01��

���	!
%�
�!��2�"

%�

!
-��

���3
�����	�/�������
�����!	����(���
��
���
����/��
!4������
!
�"��2�" �1��41��'3
�������	���/��!����
�!����
�����"�!%����

�
!4���

Nomenclature
��(���

�"�!% �"�!%

�
!4���
 �
!4���
 �
!4���

��(���

�"�!%

�
!4���

�"�!%

�
!4���

�"�!%

�
!4���

�!���%�
�

82

What is worth to remember
��(���

�
!4���
 �
!4���

��(���

�
!4���
 �
!4���
 �
!4���

Access
������
����
���/����5
�����(
���)�!�����6�(���4�()
��������
���/����5
�����(
���)�!����	!
��
�
�

��
!4���
���78'69:�	&�''8#
�"�!%�
�	78'69:�	&�9'81#
�	������������	����
���%�#��'�1��%�#
�%������;�#,<'':,99&<=<�1%������;�#
����
!
��;�#&,.�1���
!
��;�#
��!�	�"#

�	�$����#,<�1	�$����#
�	����
!
�#<>�1	����
!
�#

�1�!�	�"#
�1�
!4���
#

83

I/O requests
��������� �/�
������
�
������!��"��/��
�
����
�

������ �#�"��/����

!)1	
�����
�
������$#%&'�/�	(��$����$�-���
���
��!�
!

�
��(���
!
�"�
������(�"�""��/�������!�
��
!��

���

GEOM on my laptop

��'

��'�,

��'�,�

��'�,���'�,�

�	�1
!!
 (���(1����

(���(1���� �(�

;4!(1
���1�
�4�
� �(�

�?*� @��@��

��'�,�

�	�1�
�4�
�

;4!(1
���1�
�4�
�

�0�A

��+

���

B*��B

�B0

C��DDCE�B
84

gconcat(8)
����%�(���
!4���
��!���
���
�!�
�������
�����1��41�!���
1��%�
�����"�D

gconcat label name da0 da1s1 da2s2d

'

,

.

>

:

&

<

,'

=

9

F

,,

��' ��,�, ��.�.�

gstripe(8)
��+*0�'
�������
�����1��41�

���1��%�
�����"�D

gstripe label name da0 da1s1 da2s2d

'

>

<

=

,

:

F

,,

9

&

.

,:

��' ��,�, ��.�.�

,'

,>,.

85

gmirror(8)
��+*0�,
�������
�����1��41%�

!
1��%�
����
!�)��$
!��;�
�!�
�����"�D

gmirror label name da0 da1s1 da2s2d

'

,

.

>

'

,

.

>

.

,

'

:

��' ��,�, ��.�.�

>

::

graid3(8)
��+*0�>
�������
�����1��41
���>1��%�
����""�
����
!
���;�
��.GH,��
!4���
�
�����"�D

graid3 label name da0 da1s1 da2s2d

,1'

,1,

,1.

,1>

.1'

.1,

.1.

,I.1>

,I.1.

,I.1,

,I.1'

,I.1:

��' ��,�, ��.�.�

.1>

.1:,1:86

gjournal(8)
���(!��J(�4�(��!�
��(��"�2�!
�	�(���)�
�%�(�4�(

�!�
��(��"3
��	�(���)�
�%�����������

��������������	!
�	�(���)�
�%��!�
��(��"���
$

%���%�(���!�(��"��!���������
����

��
()�������������	!
�@����!�
��(��"
�����"�D

gjournal label da0
newfs -J /dev/da0.journal
mount -o async /dev/da0.journal /mnt

ggatec(8), ggated(8)
���6�!

���
!
�"��!4�
�
$����
�!
�
����
4�
����"�D

echo „10.0.0.0/24 RO /dev/acd0" > /etc/gg.exports
echo „10.0.0.8/32 RW /dev/da1” >> /dev/gg.exports
ggated

���(���
����"�D
ggatec create -o server /dev/acd0
ggate0
mount_cd9660 /dev/ggate0 /mnt/cdrom
ggatec create server /dev/da1
ggate1
newfs -J /dev/ggate1
mount /dev/ggate1 /mnt/data

87

gshsec(8)
���%�(�%��
���$�
������
�
�	���
�!��(�
)
���((��
!4���
���
���������
!�
����
$����
�
�������
�����1��41�$���1��%�
�����"�D

gshsec label name da0 da1s1 da2s2d

,1'

,1,

,1.

,1>

.1'

.1,

.1.

>1>

>1.

>1,

>1'

>1:

��' ��,�, ��.�.�

.1>

.1:,1:

geli(8) 1/2

���
!4��������
)�
�!��������
�"
�
)
4�
�	���
�!�

���
�(�;����
)�
!2=3�	
�%��!
��/�������
)�
!
$�
���
����
!%�
���(()

������!

��4�
�!������
)�
�!���("!
�
$%�
2*��-���%�((��-��(!�	��$-�>���3

������!

��4�
�!�����
$��
���
�!���("!
�
$%�
2K�*L1%�&-��$�,-��
���%�,<'-��$�.&<-
�$�>9:-��$�&,.3�

����)����������(�
�!4�
���
4�(��!%�!���
�
2�����$
���-�
���!%���
��	
!%���	�(�-��
� 388

geli(8) 2/2

���((!���
!����
)�
��4���
!!
��
!4���

�������$
�����

��"
$�������
$��AL�M&4.
��
�!�����������
���)�������������
���
�

�����%��)��!
����
$
��������%��)

L�@��!
���
$���)�
�%�$��

L!%%��"��!!��2��

��
()������
	!
���!�()3D
���������1
���%������!

ZFS
���
�������!

��%�(�%��
��
�!�����

�(�����D

� C��DDE��E�/��!���%�
�J!�()��(��������

!��������������
!4���
�

� C��DDCE�B�/��
!4���
�J!�()��(��������
	!
�CE�B�

89

geom(8) 1/2

���!�

!(��
�(�
)�	!
�%!�
�������(�����
��	����
����
���!%%�����
$�
��!
����
$��((

�(������2(��
-��
�
��-�(!��-���(!��3
�����"�D

geom disk list
geom bsd status

geom(8) 2/2

���(���J�����	���	���
�!����%�(�%��
���4��
(��
�
����21(��1"�!%13

��	!
�
$����!4�-�!�����������"��(���#
�!%%���

���(���������
��!	�"�!%293D
� ���$�
� �!���

� �(�
� �!�
��(
� (���(
� %�

!

� %�(
���
$

���!�
����

��
���>
���$���
���

���
��4�
�
!

90

Questions?

91

92

�������	
���
�
�����������

��������	
�����

��	������	����������

�������	
��
��

�	������

��
��	��	�	������	��	���������	�����	�������	������	�	��������	��	�������	���	�
��	��������	��	����	

���������	�����	�	

 !� 	���������	���������"	
��	��
��	��������������	���	���	����������	#	���	

�������	�����	��	���	��$����	���	���	����������	�����	��	���	���	�����	������������	����	���	������"	

��	���������	��	��������	��������	��	���	���������	�������	�������	����������	���	����	������	�����	

���	������	���	������	�������	������	��	�	�������	�����	�
��	��$���"

��	������	��
��	������	��	�����������	��	�	���������	��
��	������"	
���	�����	��$���	���	�����	

����	��	���	��
��	������	���	����������	���	�����������	����	���	��
��	�������	���	���	���������	

����������	���	��	�����	���������"	
��	��������	��
��	���������	��	����	����������	���	��	����������	

���������	���	���%��	��������	����	���	�����	��	���	������	���	��������������	��	���	��������	

��
��	���������"	
����	�������	����	��������	���	����������	��	���	�$�����	��
��	�����������	��	����	

�����	����������"	
��	���������&�	�����������	�������	���������	�������	��	����	����������	�����	

����	�'��������	������	����	���	����������	��	�����	���	��������	���	�������	������	��	(���'	���	

�������"	����	�����������	����	��	���	���������	���	���������"	
��	�����	���������	��	�'�������	

������	�������	��	�	������	���	��������	����	������	�����	������	�������	�����	��	����	��	

������������	������"	
��	�����	���������	��	�'�������	����	�����	��	�����	��
��	���	�����	

���������	���	����	����	�����	�����	��	�����	��
��	�����	��	�'������"

���������	
����

)����	���������	�������	������	������	�	�������	���	����	������������	��	���	��$���	#	��	���	�����	

��$��	$��	�������	����	�������	*���+	����������������	��	��	���	����	��$��	�����	����	�������	����	

��	���	���	������	�����	��������	��	��	�������	��������	�������	*���+"	,���	���������	���	

��������	���	����	������	��	�����#�������	���	��������"	
������������	�����	��������	��$�	����	

�����������	�$��	������	��������	��	���������	������	���	�����	�����	
������	*�
+	��	

�����������"	-��������	� 	����	��$�	����	��������	����	���������	������	��$������	��	�������	

�'������	���	�������	

 !� 	���������	��������������	���	����������"	��������	���	�����	��	�
	

��$����	���	��������	��$�	��������	��������	���	����������	�����	�������	����	����	���	���	������#

������	������"

��	$�������O��	������	����	������	���	�����	$������	��������	�����	���	��	��������	����	��������	

���$��	��	��������	���$���	�������	�����	�������	�����	��	������������	��������	�����������"	

��������	���	$������	��������	���������	����	��	����	��	���	����	.(��	����	����������	���	

�������	���	��	����������	������"	
��	���$�����	��	������	� $/	���	�������	����	�����������"

��	������	���	�������������	���	��
��	�������	�'����	���	�����	����	���	���	���0����	��$�	����	

����	��	����	��$������	��	����	�������	���������	���	����	��	�����	��	������	��	�	���$���	�����	���	

������	��
��	������"	
��	������	��
��	������	1
�����522/3	���	�����	��	���	������	���	

93

����������	��	��������	522/�	���	���	�����%������	����	�$�������	���	���	��	�����	 4��5#�����	

���������	��������	��	���������	��	���	��������	����	6�)	��������	�������	���	����������	���	

�����	��	������"	��	���	%������	�����	��	���	�������	�����	����������"	��	��	��������	��	���	 4��5	

���������	�������	���	���	�$��	����	��������	��	7������	5 "	�����������	��	������	����	��	���	

���������	�������	�	���	�'�������	��$�	���	����	�����������"	
����	���	�	������	��	�������	���	

�����	��������	�������	����	�����	���	���������	��	�����	���	���������	������	���	�������	�����	

���������	������	�����	�����������"	��
��	����������	����	���	�������	����	�$�������	���	����	���	

���������	������"

8���$���	���	��
��	������	��	����	����	��	���	�%������	#	���	���������	��	���	������	����"	��	�������	���	

���������	������	��%�����	����	�	����	������	��	����������	�������	*�����	������	������	�����	���+�	

�������	���	��%����	���	�����	����	��	���	�������	���	�����	���	���	���������	��	����	�������	���	���	

��������	��	������	����	���	�������	���	�������	���	��������	����	��	���	����	������	�����	

��%������	���	���������"	
��	����������	��	����	���������	��	����	��	�	���������	�����������	��	

��������	�����	��	���	�)�9	���	-��)�9	�'�������	��	��������"

��������������

������
�
����������

��	�9
�	��������	-�
	:;52	��	522:�	����������	���	��
��	��������"	-�
	:;52	����������	���	

��
��	��������	#	��	������	���	�
��	��$����	����	���	�����������	��	�����	�	

 	����������	��	�	

���������	����������	������	����	�	���������	�����"	
��	������������	������������	����	����	

���$����	��$��	����	��	�	������	��	��������	���������	���	����	������	�	������	��	������"

��	��
��	������	���	��	�������	��	��	���	�
��	���$��	#	��	����	�������	���	��%�����	��	����$�	����	��	

����������	��������	����	���������	��	���	������	��	���	��%�����	���	�������	�������	��	���	���������"

������������	�	������	��	�����������	���	��	����<

� ������������	������������	������	�	����	�������	����	��	

 !� 	��������������	��������

� ������������	������������	�����	��
��	�	����	����	��������$�	��������	���	��������	

-���$���	���		��������	
���������

� �'������	�����	���������	����#����	�'�����$��	�����		
������#�����	��$�	�	���#�����	

���$���$��			������#�������	����������

� ���	��������	�������	���	����	����	���$�����	#	,�
,		��������	���������	����	�������	

���������	����������	���������	���	���	�	�������	*����������	�'������	����	����	��	�����	��	�	

������	�����	��������	��������	����	���	�����	��������+

������
�
���������

��
��	�������	���	���	�����	���$���	���	���	��
��	��������"	
���	���	�$�������	����	����	$�������	

���������	����������	$������	��$�	������	��	�����	�����	��	���	���������	������	������"	
���	��	

����������	��	����	��$������	��	�����	��������	#	�����	��	��	����	���	�	�������	�������	��������	���	

���	��
��	�������	��	��$�	��	����������	��������	���	�
��	��%����	���	��	�����$��	������	���	�������	

����	�'������	�
��	���$��	�������������	��	����������	���	���	�������	������������	����	��	���	

���������	�����������"	7�����	����	��	���������	�����	���	��$���	��	O���#����	

 	�������������	����	

�������	���	�����������	��������	*��	�	�������	�'����+"	��	���������	����	������	���	������	���������	

94

��	���������	#	��������������	���	�������	����	������������	���	�'�����")��������	��������	���	

����	����	������	��	��$����	���	���������	���	��$�	����	������	��	���	��������	���������	����	����	

�'���"

��	������	��
��	������	��������	()��	��	����������	�����	�������	��	��"	��	���	��	�	�������$�	����	

��	()�	��������	��	����������	�	
��-	���	��%�������	�����������	���	���	����������	��	��%�����	

����	����������	�����	��	���	�������	��	����	
��-"	
��	���������	����	�����	��	=���	��=�	���������	

�����	
8� 	��	����	��	��	����	��������	����	�������$�	����	��	��������������	������	���	��	

����������	��	��	���	����	��	��������"

������
�
������������

�	�����������	����	��	��
��	�������	��	���������	��	����"	�������	��	���	������	��	���	���������	*��	

�������	�
��	��%������	���	������������	����������	��	�������	�	����	���$��+	����������	��$�	���������	

����	�����������	��	����	��	���	���������	������	"	
���	��	���������	��	�����������	�
��	���$���	

������	���	���������	������	#	�������	�
��	��%�����	��	�����	��$�����	���	�������	���������	����	��	

����	������	�����������	����	������	���	���������	������"	

��
��	����������	���	����	$������	�����<	��������	����������	���	�$�������	��	���	����	��	8���	���	

��������	*8���+�	���	��������	����������	����	����	����	���������	�������"	��	��	�'������	����	

����	��������	��
�	����	���	��
��	�������	������������	�$��	���	��'�	���	�����"	
��	����	��	����	

�����	����	����	����	��������	��
��	����������"

�	����������	���	�����������	����	��	��	��
��	��������	���	�������������	���	���������	��	��	��
��	

�������	��	�����	��	���	��
��	�������	9������������	�������	�����<

����	���	�	������	��	��������	����������	�������	�$�������	���	�������	#	���	(�����	���������	����	

522:�	�����	��	���	��	�����	$������	��	�������	���	����	���	������	��	��$�	����	����$���	

�����������	���	���	������#�����	���������	�����	�����	�����	��	��$�	����	�����������	�������	����	

95

��	���������"	���	(���'�	���	����	�������	��
��	��������	��	���)�8	���������	���	�������	�����	��	

����$���	�����������	���	���������	�������"	���	,��	4�	5�	������	��������	���$���	��	����������	

���	���	,��������	���������	��	������	�$�������	���	7������	5 "	�������	>2	���	���	��	��
��	���������	

�����	�������	>2)�����	5�	���	��	��
��	������	�����	�������	>2	������	?"

�������	���	����	����	��
��	���	����	������	��	�	��������	���	�$��	��$�	�����	����	��	���	���	��	����	

���	����	��	���	���	�����"	
��	������	��
��	������	���	����	�$�������	���	���	������	���	��	���	

����	�����������	����	������&�	�������	���	�������	�����	�������	���	��	����	��	���	�������	

������������	��	�������#�������	��������"	,���	��	���	���	��	���	��
��	������	���	����	��	����������	

()��	��	����������	�������	��	���������	���������	�������	@	���	������	����	����	����	��������	

�������	%��������	�����$���	���	A�����	���B	�������	����	,��������	���	(���'	����������"	
��	

��������������	����#��	��	��
��	��	���	���	���������	����	��	����	��	���	����	��	���	���������	@	��	

��	���������	��	���	�	�������	��	���	�����	��	���$������	���	�����������	����	����	�������	��	���	�����"

���	���	���	���������	�������	��	����	��$������	��	���	���	��������	��	��
��	��������	�	�������	

������	��
��	���������	���	������"	��	����	��	��������	������	���	���	$�������	��	���	���	������	

�������	�����	����		���	���������	�
��	���	��9	�����������	��	���	�������	��	��
�	���	���	

��$����"	
�	�����$�	�����	���������	������	����	�������	��������	�����	��	���������"	

�����
�
��������������

��	��
��	����	��	���	������	����������	���	���������	��������������	������	���	���	��	���	����	

�������"	���	��	���	��������	�������������	���	�������������	��	�$��������	�������	���	������"	
��	

����	�������	���	���	��
��	������	��	�	���������	�������	�����	������	��
��	��%�����	��	���	�������	

���	$�������	���	���������	��	�����$��	����"

��	��
��	������	��	���	������	���	����������	��	�����	����	�	���������������������������	���	�	���$��	

�������	���	���	������	������"	
��	�������	����	��	���	�������������	���	�������������	��	���	��
��	

��������	�������	�����	����	�������	����	�������	��	���	��
��	�����������	���	�������	��	�����	���	

�������	����	���	���	���������	�����������	���	��������������	����	��	���������	���	�	����#�����	��
��	

�����	��	����	�����"	

������	���������� !
"

-�����	����	��	�����	C�����	1C�����522;3	��	���$���	=����	��	���������	����	������=	����������	

���	��	���	������	��	��#���������	���	�)�9	���������	��	���	��	�����	1C�����
�����522;3�	���	

��������	��	�	����������	������	�������	�������	����#�����������	����	�������	���	��	�������	��	

����	����	������	�����	��%�����	����	���	�������	�������	�����	���	��	������	���	�����	��	���	�������	

�������	���������	�	������#�����	����	������"

��	�)�9	���������	��	����	������	������	��	���$���	�	������������	�����	��	�������	���������#

�����	����	��������	���	���	�����	�'�����	����	�������	���������������"	
���	������	���	�����	

���������	������	��	������	���	������"	�����	�������	��������	�	�)�9	���������	��	���	���������#

�����	����	�������	���	���������#�����	����	������	�������	��	���	$��	�)�9	����	���	��	�������	

��������	,��	4�	5�	(���'	���	�������"

96

��#�$���%��%!������
��&���
�� 	�
�����'��(

��	����	��������������	����	����	��	�������	�����#��$���	��%������	�����	��	������������	

����������	��	���������	�	���������	$������	��	���	��
��	���������"

�	������	����	�����	��	����	����	���	�����������	��	���	�������	����	�����	��	�����	��	������	

�������	���	������	��	���)�	���$��	��	����������	�����	�����	�����	���	��%������	������	���	

����������	���	������	����	��������	�������	���	������	��	���	�������	�����������"

8���$���	�����	��	���������	�������	��	�������	�	��%����	��	�	$������	��$���	�������	���	���	��������	

��	�	���������	����	�������	�����	���	����	�����	����	��%����	�������"	
���	�����	����	�����	��	��	

97

������	��	������	���	=����	��	���������	��$���=	�������������	#	���	�'������	�����	���������	�������	

���	������	�������������	���	��	������	��	�������	��$���	��%�����"

�������������	
���
�
�����������

�����������������������	
�	��

��	�	����������	��$���	���	��
��	���������	������	�����	��%�����	���	������	*�����	������	���	��O�+	���	

����	�	������	��$���	������������	�����	��%�����	��	���	��
��	����������	�����	����	��	���	��
��	

�������	���	�����$��	���	���������	�����	��	�������������	���	����	����	��	���	������"

��	�������	��$��������	����	���	���	��������	���������	#	��$��	���	��������	���	�$����������	��	�	

������	��	��������	������	����	��	���	��
��	����	��������	���	���	������	��
��	������	��	�	

��������	��������	����	�	 4��5	����������	���	%����	��������	��	�����	 4��5	�������	#	���	��	

�����	�	��$���	��������	��	�)�9!-��)�9!�����	��������������	�����	�)�9	�����	��	����	������	

��%������	����	�����	�����	����	��	��$���	���$��	��%�����"	
��	���#��������	�)��	1������522:3�	�	

(���'	���������	���)���#�����	��$�����	���	��$���������	#	��	��	�	������	��������	���	(���'	�����	

���$����	����#�����	��$���	�������"	4��	���	��$���	�������������	�����	���������	����!�����!�����	

��%�����	��	���	����	�������	�������	����	��	���	��������	���	���	���������	��	��#�����	���	

��������	����	�������	���	������	��	���	������"	
���	��$��$��	�	�����������	������	��	����	

�����������	�������	���	��$���	��$��	���	�����!-��)�9"

������	���	��������������	��	���)�	��������������	�	������	��	��������	����	�����$��<

� �����������	��#��������������	��	�����	�������������	���	�����	���������

� ���	�����	���������	���	�	��������'���	���������	������	���	��	��#���������	����	�����	���	��	

�	����	���	��	���������

� �	����	������	��	����	��#���	������	���������	��	��������	������	�����	���	���

� ���	�������	��	���	���	���������	��
��	����	�������	��	�	���	���$��	������	$���	��������$�

�����	����	�����������	������	�����	���	�����$�����	���	����	#	����	��$����	�����	����	���������	

����	��	���	��	������	�����	�	!��$	��������	��	���	��	�����	��	����	��	�����	C�����&�	�������	�����	

��������	���	������	����$��	��	���	�������	������	#	��	���	���	�������	-��)�9	�������������	��	�����$�	

���	��%�����	$��	���	��������	�)�9	��	�����!-��)�9	�������������	������	����	��	���������	���	

�������������"

��	��������	��
��	���������	���	����	�����	��	���	��	���	���������	�����	���	-��)�9�	��	����	

���������	�������������	�$�������	��	���	�'������	��������	��	�����������	��%�����	���	�����������	

���������	����	���	������"	��	���������	��$������	��	���	����#�����	��������������	���	���	�����	

��	��$��������"

98

��	������	���	���������	�'�����	�����	���	��������	��
��	���������	��	���������"

�����)�������

�	������	��	��������	���	������	�������	���	���	��	���������	����������

�
��	������	���	�����	�������	��	�����	�	���������	����������	��	����	��	��$��������")����	���	

�'������	�����	�������������	������	��	��	�����	����	������	��%�����	�������	���	���������	

�������������	��	��������	����	��	���	������	����������"	

�
��	��O�	��	���	��
��	����������	��	�����	��	������	�����	��	>;	���������	��	���������	
"	

��������	����	����	���	�������	���	$������	���������	��������	�����	���	����	��	����	�����	��	

���������	�������	��	$������	����	��������	�����	���	������	��	���	��	���	������#���������	

99

-��)�9#�����	����	�������	��	���	�������������������������	���������"

� �������	��	��	�����������	��	����������	���	��
��	���������	��	������	������	��	��������	

���������������	���	��	�����	�'������	���������	�����	��	����	��$������	��	. ��	� ���	���	

�����	�����	��	��������	���	��������������	���������	�������	���������	���	������"

� ����������	��	��$������	�	����	�������	��	�	���������	���������������	�����	���	����	

���������	���	��	�����	�������	�������������	��	�	$������	��	���������	���������	�������"	

 ���������	���	 4��5	���������	������	�����	��������	���	�)�9	����������	��	���	����	���#

��%������	��	���	��
��	���������"	�����	���	�$��	���	���������	���	$�������	���	���	����	

������	����	���	����	������������	���	���$����	����	��	�	�����������	���"	
���	����	���������	

������	���	������	��	��������	���	���	������	��	��������	�����	���	���������	�����$��"	
���	��	

���	�����������	��	���	���������	�������	#	(���'	���	���	���	��������	���������	��	����"	

� ����������	��	��	����������	�������"	��	�����	��	�	���	��	��	������	,������	���	������	����	��	

����	��		�����"	
��$�������	��	�����	��	������	�����	��	�������	��	������������	����	������	��	

�������	����	�����������"

� ��������	��	�������	���������	����	���	���$�	��������	����	��	����������"	9���������	���	����	�	

�����	��	�����	�����	��	����	��	����������	�����	�����	���	�����$�����	��	���	��������	��	��	

��	��������"

� �	���������	���������������	����������	��	�������	�����	����	��	��	������	��������	��	�����	

�����		��$����	��	���	��	���	��
��	����������	����	��	����������	�����	��$�����	��	��	�����	���	

���������	��	�	-���	���������������	��	������	��������������	�������	��	���	�����	����	������	

��	�	������	����"	
���	����	��	�'������	��	����	������	�����	��	����	�����"

�����&���*�
+�

����	��	�	�������	��	����	���	�������	����	�����	�	���������	���������	���	��
��	����������	��	

�������	=��������="	7�����	��	��	���������	����	������	��	���������	��	��
��	���������	��	����#

������	���	����	��	��$���������	���������	���	�����$�����	��	��$��������	����	������	���	��	

��������������"

�������	��$�	����	����	�'�������	�����	���	�����������	��	��	��
��	���������	����	�	��O�����	

���������	���������"	
���	����	��	���������	��	�������	:"?	��	����	������	����������	���	-���#

7����	9'���������	�����������	��	��	���	����������	��	�����	���	���	��������	���������"

��	����������	���	������	�������	��	�	�������	����	��	���	�����	����	�������	�����	��	�	����	���	�	

�������	�����	��$���	*$��+	��	��	����	��	��$�	���	�������	����	�����#��$���	����������������	��	����	

��$���	����������	���	������������	����	��������	��������"	
���	��$���	���	���	��	�$�������	��	���	

�����	��	���	��������"	
�	�$���	���	��	���	$��	��$����	�	�����	�����	��	���������	��	���	����������	

��	���	�%��$�����	��	���	�����)��	����������	���	����	�������	��$����	�����	��	����"	
���	

��	��	����	��	������	�����	��������	���	���	��	��$��	���������	����	����	����	��	����	����	��	���	

��������	�����������	��	����������	���	�������	$��	�	�����	��$���	��������"

��������	�����	��	�������	�����	�������	��	����������	��
��	����������	��	���������"	�����	���	����	��	

���$������	�$��	��������������	������	���	�����	��$��	��$����	��$�	����	��	���	����	���	���������	

�����������	����	�������	��	���������	����	��������	����	��	������	�����	��	��	�	��������	���	��	���	

�������	��	��
��	�����"	
����	���	�	������	��	�����	�����	��$�	��	��	���������	����	�	������	��	

��������	���������	�������	,�
,�	��������	���	��������"	4���	������	����	��	���	����	���	���	���	

���	� 	���	���������"

100

�����,���'�*�'��(

��	��������	��
��	���������	��	�$�������	�����	�	:#������	���	��������	���	������	��	��������	��	

���	������	����	�	�)�9	���������������	���������	��������	,��	4�	5�	�������	���	(���'"	
��	

������	��
��	������	��	�$�������	�����	�	:#������	���	��������	���	������	��	��������	��	���	

 4��5#����	������"

�����)��
-.��+���������'%���'��"/������
�

��	�����	����	����	���	���	��	���	��������	���������	*�������������	����	���		��
��	������	��	���	

����	�������+	���	��	��	�	�����"��	����	�����	������	���	��������	������	���������	���	�������"	

��	���	���������	������	2"?D	��	���	����	�����	��	��������	���	�����"��	���	�����	��������	����#

�����	�������"	
��	�������	����	���	��	���/E	�������	������	E"FF":E�	����	G	6��	���"	�������	

��	���	������	��O�	��	����	��������	������	�������	����	��	�	������	��	���	�������"	

��	��	�����������	��	����	����	����	���	���	�����	����	�������	���	��	���	���������")�������	����	�	������	

����������	�����	�����	��	�	�����	A8����	7����B	����	��	�������	�������	����	���	���������	����	��	

���	���������	��	���$���	����	���	����	�������������"	��	����	�����	�����	���	��������	�������	���	

�������	����	����	���	�����	��	����	��������	������	���	��$��������	��	���	��
��	������	����	���	

��
��	����	��������	���	����	���	�����	��	����	����"

�����%����	����	��$�	�����	����	��	��	���	�����	�������	��	����	��	���	��
��	$�����	�����	��	���	

����	������	��	�����������	���	�����	��	����������"

���#�$����*�'��(

��	��������	��
��	����������	���	��	���	��������������	��	���	��	-��)�9�	������	����	��	���	

��������������	��	�)�9"	
���	��������	��������	,��	4�	5�	���	�'�����	��	(���'	���	�������"	��	�	

�����������	��������	����	����	������	��	�����	�����	��	�	��%��������	���	�	�������	��$���	��	��	����	

��	��	�������	��	���	��	���	�������	$������	����	���������	��������	�����	���	����	���	$����	����������	

��	������	��������	��������	��	�����	�	����	������	��	���	����	����������	�������"	�������	���	

,��	4�	5	��$�	���	���	��$����	�����	���	����������	�����	(���'	���	���	�

�����	��$����	���	

�������	���	�
���	���	��������	����	��$���"

���0� ���	���

����	��	���	��������	��	���	 �������	��
��	���������	���	���������	�����"

�������� !�"������

��	���	����	���	����	O����	����	��	��	����	��	���������	��	�	������	�������	��	����	����	��	��	����	

��	����	����$�����	()��	����	�����$���	��	�������	�����"	
�	�	�������	�'�����	����	��	��������	��	

���	������	��	���	����������	���������	������	��	��%����	������$��	()��	����	��	�����$���"	

������������	���	()��	���������	��	���	������	���	��	���������	����	�	
��-	�����	��	��$��	��	���	

!���!�����!�������	����"	��������	()�	�������	���	��	��������	��	���	�������	�����	���	�������	��	

��������	���	����	����	��	���	��
��	��������	����	��	��������	��	������"

101

�������� !�"��#���

�	�	�������	�'�����	���	������	��
��	������	������	���	()�	-���	�������	#	���	�������������������

�������������	����	��	����	��	��	���	�����	��	����������	#	���	�����	����	��	�������	��	���	�'����	�����	

���������	���	����	��	��$����	���	��������	�������	���	���	������"	()��	���	��	���	��	�'�����	��	�����	

()���	���	���	��	��������	��	�	������������	������	*����2+�	��	�	��������	������	*����>+"	
��	

�����	���	������	�����������	����	���

� ���	���$�����	��	�������	�������������	��	����������	-���>	()���	��	�����	������	������	

��	��	����	����������

� ���	�������	�������	���	���������	��	()��

� ���	��������	��������	��	-���?	*�����	���	���	���	����	������'���	���	���	������	����	��	

�����&�	���	��	����	��O��	��	>	
�������	���	����+"	����	�������	�����	���	����	��	����	

��$������	��	�����	������������	���	����������	���"	������	���	����	����	-��������	��	

���	���������	���	���$�����	����������	������	���	����	�������	���������"	-��������	���	

���	��	��
��	=����=	��	���	��	���	����������"

��������
����#�$����%���&'���������
������&

��	��
��	��������	����	���	����	��	������	��	�������	���	�����	��	���������	�������	��	������	�����	

�����	��	��������	��	��	����	��	������������	���	�������	������	��	���	�������"	��	������	
8� �	�- �	

C�������	*���	6��� �+	��	����	��������������	����������	��	��	����"	��	���������	��	��������	����	

����������	���������	������	����������	���	��	����	��	$�����	����	���	�������	���	�������	���	�����������	

�������	�����	���������	*�����������	�������	

 &�	������������	��������	�����	��	����������	

����	��	����+"

��������	��	�������������	������	��	����	��	�����	����	����	��	. �	��	���$���	���	

��������������	�����	�����������	�$��	��	����	���	��������"

��������	��	���	����	��	����	���	��	�������	��	�����	���	�����������	�����#��$��	���������	��$����	

����	��	������&�	����	�������&�	�	� �	��	4������&�	����"	4���	������	�������	�������	�	

������������	��������	�������	�����	��	����	��	�	������	����"	9��������	�����	��$����	��$�	�������	����	

����������	���	����������	���	�������	��	��	����	��	���	��������������	��	���	����	���	�������	����	

�����	��	���	�����"	���	����	�������	�������������	��	��
��	�������	������	����	�����	�$��	� ���	

�����$��	���������	��	����	�����	����	��	. �"	8���$���	���	�������	�����	�'���	��	�	��#�������	

���������	��	�����	���	���	�����	���&�	��������	��������	�������	��	���	�����	*����	��	��	�	������	��	

�����#��������	�������+�	����	����	��	���������	�����	��$���	���	��	�����	�������	��	���	��	���	

��
��	$������	��	���$���	����������	����	������	���	���	����	������	��	���	��������	����	�������	

�������	���	��
��	$�����"	������������	���	�����	��	���������	�����	��$���	��	���0�������	����	���	

��������	��
��	���������	���	���$����	���������	1
�����522G3	"

�(��)�������*���

���	�������	���������	����	��������	������������	����	�����	��	����	��	���	������	��
��	

�������	���	���	�������	����	����	��	��$������"

102

�����1����'%*���������������

��	��	%����	��������	��	=����=	���	�����	����	��	�������������	�����������	���	���	��
��	���������	����	

���	������"	��	�����	�����	��	�����	����	���	�'�����	�����������	����	��	��$�	����	���	�����������	

���	����������	���	��	������"

������
�
��)������

�	��	����	��	����	����	��	��
��	��$����	�������	���$���	�����	��$�	��	��	��������"	
���	��	�������	

��	���������	���	�����	���$���	��	��	����	��	���������"	��������	��	������	���������	�������	��	����	

����	��	��
��	$������	��
��	����	�������������	�����	��	��	�$�������"	
���	�����	����	������	���	

���������	�������	��	����	�����������	��������	����	��	�������	�������	��	��
��	8���	���	��������	

����	�����	���	��%����	��	���	������	��	����	���	���������	����	���	��
��	$�����"	
����	����$���	��	

���	�	���������	#	���������	�$��	���	��������	��$���	�����	���	���	���	������	��	���	����	��	

�(��8	��	-4,	��	������	����"	
���	�����	����	��	���	��	����	����	�	����	�������	���������	��	

���$�������"	
����	��	�������	���	����	��
��	�������	�����	��	�����$��	�������	�����	������	

��������"	�	������	�������	����	�	�������	���������	�����	��	����������	����	�	����	���$���	��	

�����	�������#����	�������	���������"	��	����	��	���	����	��%������	���	�������	����	��	���	���	

���������	���	�����	��$���	���	������	��������	���	����	�	������$��	���������	���	��	����	��	�������	��	

�	��$��	��
��	�������	���	��	�����	�	����	������	��	���	��	���	��
��	$������	���������	��	���	

������"

�����2	'�����-���

�����	����	��	���	����������	��������	����	��	���������	��	�'�������	��������$��	����������	��	���	���	

��	��
��	���	��������	-���$���	���	��������	
���������	 �������"

�����3�����

���	O�����	���	��	�����������	��	���	��$���<	��	���������	���	��	��������"	�������	�����	���	��	

������	��������	��	���	�����	��	���	����������	�����	�����	��	��	�	���	��	�����$���	����	���	

����������	�����	�������	���	�$�������"	
�������������	�
	����	��$�	����	�	������	����	���$���	��	

����	��	���$���	����	��������"	��
��	���	�	�������	���������	������	����"	����	���	��	�������	��	��	

�������	��	���	#	����	����	������	���	
���������	��	���	������	��	��������	��	�	%����	����	���	

���������"	��	����	��	����	���������	�������	�������	���	��	����������	��	��	�$�������	��	�������	�����"	

���	�������	O����	��	�������	�����	���	�$�������	��	���������	�����"	���	�'������	����������	O���	

�������	�����	��	���������	��	����������	O���	���$���"	��	���	�������	�����	��	����	���	����	

���$�����	��������	����	���	������	��	���	������"

�����42�����������������,��'�
������2��������

��
��	����	��	���������	���	.������	,������	��������	���	���������"	4���	����	���	�������	��	

����������	��	���	��������	�������	���	�	$������	�������	��	��$��	�������	��������	�����"	��	��	

��$������	����	.������	,������	���$���	 ��$�����	�����	���	����	�������������	��	������	�����	������	

$������	��������	����	����	�������$���"

103

���#��'	������� �'���(���.�

-�����	�������	����	����	������'���	��	����	��������	�����	��	��	���	��������	��	��$�	�������	����	

�������	����������	��	���	���	����	�������	��	���	����	����"	
��������	����	�������	���	����	���	����	

��������	��������	��������	������	��������������	��	���������	������	���	�����������	�������	��	

�����	�����	��	���	����	�������"

(���'	���	����	����	�����	���	6��	����	�������	����	-��	8���	�	���	����	��	����	����	��	

�����������"	
���	��	�	��������	���������	����	������"	

8���	�$����������	���	����������	��	�������	����	�����	���	��	����	��	��	����	����	������	�����#��$��	

�������"	
�������	��	�	����	�$����������	����	�������	�����	��	���$���	����������	��	���	����	�����	���	

�����	��	�������	��	���$�������"	-���	��	�������	����	������	�����	��	����	���	����	�$����������"

���0�&(��.�
�.�����.��������
�
���������5!6�

��	���	�������	�����	���	������	��
��	������	����	����	�	�������������	�����	���	�������	()��	

���������	��	���	��������	��	���	�������������	����"	
����	��	��	�����	��	���������	���	

�������������	�������	��������	���	��
��	�������	���	��#��������	���	����	����	�����	���	��������	

�������������	����	���	�������������	����"

���7��
�
��)�������

����	��	���	�����������	��	������	���	��
��	��������	#	��	��$�	��	���������	�����	�����	���	��
��	

���������	���	������������	��%������	���	�������	����	����	��%�����	���	�	���������	��������"	
���	

�����	��	��������	������	������"

���8�� �$����� ��$

��	���	�����	
������	���	������	���	-�
�	��$�	����	���$����	��	���	�9
��	�����	���$���	������	

�����	�����	
������	�������	$��	��������"	
����	���	-�
	E>;5�	�����	�������	=�	 �������	���	

��������	�����	
������	�������	�����������	��
 =�	���	-�
	:G5>	��	=�����	
������	4$��	

 !� 	*�
� +="	
����	���	-�
�	���$���	�	�����	��	�����	�����	
������	���������	��	

�������������	�$��	

 !� "	��	���	�������	�����	�����	��	����	��������	��	�����	���	-�
��	��������	

��	��	���������	��	���	�������	������	��	������	������	��	�$������	���	����	����#����	�'������	

��$��������	��	,�����������#����	����	������	������	���������������	���	��������	���	�'������	

�����#
������	���������������"	
����	�����	��	�	������	���	�'�������	���	�����	��	�'������	����	

��	�����	����	����	��	��
��	��	�
� "

104

�+�����-��������.''����������

����	���	�	������	��	�����	�����	���	���	���������	�������	���	����	��$������	��	�	����	��
��	

��������	@	����	���������	���	������<

� $�������O�����	�������	#	����	$�������O�����	��������	����	�	���	�����	��	���������	�����	

�����	������	�����#��$��	�������	��	��	������������	���������	����	��	���	$�������O�����	

�������"	��	�����	��	�������	�����	��	���)	�������	�������	��������	�����	*��	�����	��	

��������	���$���	��$����	���	����������	�����������	����	����	�$����������	�������+�	���	

�����	�������	���	��	��������	��	���������	��������	�����"	
���	���	����	������������	����	

�������	��	����	��������	����	���	����	��	���2	������"	��
��	��	�	�������	���	���	����"

� 6������	-�����	�����#��$��	�������"	-�����	�������	���$�����	���	��	������	���	

���������	�%�������	�����	��	��	������	�����	���	���������	��	������	#	���	�'������	��	

��O������	�������	��	���	����������	����	� 	��������	��������	�������	�����	��	������	�����	

��	����	�������	���	���	������	��	�����	�������"	������	���	�������	����	��������	��	���	

�������������	�����	�������	#	��
��	���	����	��	����	��	�����	������	��	������	��	�����	

�������	�$��	��������������	�����	��	�������	���	���������	��������	������"	�������	��	

����	���	���������	����������	��	��������	�������	*���	��������	�������	��	�)��	���	��	

���������	G	��	>/	6��+�	���	����	���	���������	���������	�$�������	����	�������	���	�������	

���	���������	��	���	��������	�����	�������	����	/E	C�!�	��	=���������=�	������	�������	��	

��������	�	����	����	�����������	�����	����������	����	���	�������	�������	��	��	��������	

��������<

� ���	#	���	�������	��	��$�	�	�������	�����	��	�������	�����	���	��	��������	���	���	

�������	����	��	������������	����������	�������	�����	���	�������	�������	��	���	��	��	

��������������")����	��
��	���	����	�������	��	���	��$����	�������	�����	���	

���$�����	��	

 	���	�������	����	����"	
��	��������	����	�������	��$��	��$���	��	

=����=	�	��������	��$���	�$��	�����"

� ,�����	������	#	������	���	�����	�������	���	�������	 ��	���	���	������	�����	���	

�������	�������"	
��	��������	�����	��������	����	�������	�	EH	,�����'��	�������	

$����	��������	���	���	�������	��	������	��	, :	�����"	,���	������	���	���������O���	

��	���	��$���	���	��������	��	#	���	��$������	��	����	��	����	��	���	����	��	���"	��
��	

���	�������	����	�������	�����	, :	�����	���	����	��	�	�����	������	��	�����"

� .-	* �������	.����	-��������+	#	����	���	��	����������	����	�$��	����	�����	����	

���	���$����	����	���	����	��	���������	��	����	�����	��
��	���	��	��	�������"	
��	

������$�	����	��	������	��O�	��	�����	��$����	�����	����	$������	��	�	���$��������#

��O��	����$�����	��	���	����	$����	��������	�����	���	����	�������	�����	��	�	

�������"	
���	���	��	�����$��	��	�	������	�������	������	��������	��	����	����	

�������	���	 .-"

� ��������	�������	���	�����	������	��	�����	�����	���	����������	��	��O�������	��	

��������"	8�$���	��	������	���	������	��	������	�	����	���	���	����	����	���	�	

������	��	�����"	8���$���	

.	���	�������	�	�����	������	��	$����	��������	

�����	�����	��	��	������	����������	���	�����	��
��	�������	���	����	�����	��	�	

����	�����

� ,����	������������	#	���	����	���	�����	���	��$����	���	��������	���	��	������	���	

��$��	�$�������	��	��	����	���	���	��	���������	�����	������	��	���	����$�����	��������	

�����	����	���	���������"	-�����	����	�����	����	������������	�����	���$�����	��	

���������	��
��	��$����	���	�������	����������	������	��	���	����	O�����	���	()�	

�������	��	������	��������	����	������	� 	����������	�����	������	��	��	�	�����	���	����	

��������	������

� ��������	������������	#	�������	��	���$�����	��4�	�����	���	�����������	��������	

105

������������	���	�������	���	�����	��	���	���	��	��	��
��	$�����"	
��	���������	���	

����	�����	���	�����	��	�	��F//2�	��	����#����	�����	���	���	�����	����	������	��	

��	��	��	�	�����	
�	��	�.�"	��	�����	�����	��	��	����	��	����	��������	��	��	�	������	

�������	��������"	��	��	�����	����	������	?"2	����	��	����	�$�������	��	����	������	

*��	����	��	�'������	�������	����	��	�����������	��4	�����	���	���+�	���	��	����	��	

�����������	��	���	���	����	��������	�������	��	����	��	����	���"	��	��	�����������	��	

����	����	���	,��������	���������	�'�����	���	()�	���������	��	��	��	��	�	��������	

�����	��	��������	���	��	��	������	�����	��4	������	������	���	���������	���	�'�����"	

7������	5 	�����	��	��������O�	���	()�	���������	��	��	��	���	����	��������������	

����"

�
����	���	����	��	�������	��	���	������	��	���������	��������	������	�������	

���$�����"	
���	���	��	����	��	���#����	�������	���	��������	
���������	 �������	���	

��������	-���$���	��������"	
��	�������	����	�����	�����	����������	��	�������	����	

���	���������	�������	�	7������	������������"	
����	���	����	��������	�����	�����	

������	����������	��	���	��������	�����	#	���	��	�������	��	��	��������	���	���	���	�	

�������	����	�������	�����$���������	����	������I	#	���	���	7������	���������	��	

���	������	����	���	�����	������	��	��������	����	���	���	�����"	��	������	�������	

���$�����	����	��	���$���	��	��
��	����������	����	���	���	��	���������	�����	��$����	

��	���	��	���	��
��	���������	�����	������	���	���$����	���������"

� 4����	�������������	#	���	��
��	������	���	���������	��������	��$�	�	��������	�
��	

���������	��	��������"	
����	���	�������������	��	����	����������	�����	��	����	��������"	

�����	�����	�������������	�������	�������$��<

� ��	���������	���	��	����	�����	�����	�	�������	����	�����������	��	���	���	

�������������	��	�	�����	��	��������	��	�������	����	�����")����	����	����	�'������	

���������	��	��$�����	�	��������	����	��	�������	�������	����	���	�������	�����	��	

���	�������	��$���	���	��	����������	��	���	��$��	����"	
���	���	��	������	���	

���������	��	�����	��%���������"

� ��	���������	���	��	����	�����	����	��	�������	������	��������	�����	�	����#��#

�����	������	����	��	��������	���������	���������"

� �������	��	������	���������	��	����������	��������	������	���	����������	�������	

���	��	����	��	�	������	������	����	��	���	�������	��������	���$������"	��	���	�$���	

��	����$���	�����	������	����	������	�����	����#����	������	���	�$�������	����	��	

��#�������������	���������	*����	�$����	����������	��������	��	�����	�����	������	���	

�����������	����	��	���	��������	����+

� �������	���$���	���$�����	�����	���	��
��	������	����	�����������	���������

� ������������	��	��������	��	�'�������	����	����	����#����	��
��	�������	�����	

������	�	���������	��	������"	���	����	���	������	�������	��	����	��	��$���	������	

��	���	��
��	����	���	�����	���	����������	���	����	��	����	��	����	����	�����	�$��	��	

������������	������	��	������	��	���	�����	�����	������������	����	������	��	��������	

��������	�����	���	�����	��	�������	���	�����	��	���	�����"

� =���������=	��
��	�����	��	����	��	�����	����#����	������	��	��	�����"	
���	�����	

�����	���	�'������	����	��4	������	�����	��	����	�$�������	��	���	���������	������	

�����	�����	���	������	���������	���	��������	���	��������	������������	�����	��	

������������	�������	��$���	��	��������	���	�����	��4	�����	*����	��
���	����	���	

������	�����	����	��%�����	�����	��	�����	���	�����	��	��$��	�������	��	���	����	

�����+"	
���	�����	����	����$�	���	������������	����	��	�������	�	
�	��	�.�	

����������	���	��4	�����"

� ���	���$�����	��	������	�������	���	 ���	���	��������	����������	�%�������	���	

�������	����	������"	7���	��
��	��������	��	��	��������	��	������	������	��$����	

��������	��	���	��������	��	����	����	�	������	��
��	������"

106

�#�����
'	�����

���	�����	���	������	�����	���	��������	��
��	�������	���	���	���%��	������	��	���	��������	���������"	

����	���	������	���	���������	���	��������	��	��	���������	��	����	���	��������	��	��
��	���	��	

��������	��	���	��	���	���	���������	��������	���	����	�������	������"	
��	��
��	��������	���	

���������	�	������	��	�����	����	���	���	�������	�������	��	��
��	���	���	��	�����������	#	��	����	

����	��	���	����	����	����	��	���	���	�����	���	��	���	����	��	�	$������	������	��
��	���������"	
���	

�����	���	���������	����	�	���������	���	����������	���	������	����������	���	���	���������	����	

�������������	���	���	����������	��	��
���	���	����	����	�'��������	��	���	��
��	������	

������������	���	��������������"

"�-�������

1C�����522;3													����<!!522;"����������"���!������! 2E#������"���

1C�����
�����522;3	����<!!522;"����������"���!�������������!�����PC�����!������"���

1
�����522/3

����<!!���"��������������"��"��!���!������!522/#>>#����������!��
��P������P���P����"���

1
�����522G3													����<!!����#����'"������"���!������#�����!522G!2>!2?!222>"����

1-�
:;523																	����<!!���"����"���!���:;52"�'�

1������522:3													����<!!���"���������"���!Q0������!��������!����!

107

108

by Claudio Jeker

OpenBSD
network stack internals

The OpenBSD network stack is under constant development mainly to implement
features that are more and more used in todays core networks. Various changes
were made over the last few years to allow features like flow tagging, route labels,
multipath routing and multiple routing tables. New features like VRF (virtual rout-
ing and forwarding), MPLS and L2TP are worked on or planned. This paper tries to
cover the design decisions and implementation of these features.

109

OpenBSD – network stack internals Claudio Jeker

Introduction

The OpenBSD network stack is based on the original
BSD4.4 design that is described in TCP/IP Illustrated,
Volume 2[1]. Even though many changes were made since
then [1] still gives the best in depth introduction to the BSD
based network stacks. It is the number one reference for
most part of the network stack. Additionally IPv6 Core Pro-
tocols Implementation[2] covers the KAME derived IPv6
network stack implementation and should be considered the
reference for anything IPv6 related.

Figure 1: Building blocks of the network stack

The networking code can be split in four major building
blocks: the network stack, the mbuf API, the routing table
and the socket API. The various protocol support are
hooked into the network stack on various defined borders.
Protocols provide methods which are registered in a pro-
tosw structure. By looking up these structures instead of
calling the functions directly a more dynamic and easily
extensible stack can be built. There is an input and an
output path that starts in the drivers and ends in the socket
API and vice versa. Every packet passing through the net-
work stack is stored in mbufs and mbuf clusters. It is the
primary way to allocate packet memory in the network
stack but mbufs are also used to store non packet data. Eve-
rything routing related is covered by the protocol independ-
ent routing table. The routing table covers not only the layer
3 forwarding information but is also used for layer 2 look
ups -- e.g. arp or IPv6 network discovery. The calls to the
routing table code are scattered all over the network stack.
This entanglement of the routing code is probably one of
the most problematic parts when making the network stack
MP safe. Last but not least the socket API. It is the interface
to the userland and a real success story. The BSD socket
API is the most common way for applications to interact
between remote systems. Almost any operating system
implements this API for userland programs. I will not cover
the socket API because non of the new features modified the
socket API in detail.

mbufs

Packets are stored in mbufs. mbufs can be chained to build
larger consecutive data via m_next or build a chain of inde-
pendent packets by using the m_nextpkt header. m_data
points to the first valid data byte in the mbuf which has the
amount of m_len bytes stored. There are different mbuf
types defined to indicate what the mbuf is used for. The
m_flags are used in various ways. Some flags indicate the
structure of the mbuf itself (M_EXT, M_PKTHDR,
M_CLUSTER) and some indicate the way the packet was
received (M_BCAST, M_MCAST, M_ANYCAST6). If M_PKTHDR
is set an additional structure m_pkthdr is included in the
mbuf. The first mbuf of a packet includes this m_pkthdr to
store all important per packet meta data used by the net-
work stack. The complete length of the mbuf chain and the
interface a packet was received on are the most important
ones.

Code Fragment 1: mbuf structures

struct m_hdr {
 struct mbuf *mh_next;
 struct mbuf *mh_nextpkt;
 caddr_t mh_data;
 u_int mh_len;
 short mh_type;
 u_short mh_flags;
};

struct pkthdr {
 struct ifnet *rcvif;
 SLIST_HEAD(packet_tags, m_tag) tags;
 int len;
 int csum_flags;
 struct pkthdr_pf;
};

struct m_tag {
 SLIST_ENTRY(m_tag) m_tag_link;
 u_int16_t m_tag_id;
 u_int16_t m_tag_len;
};

Mbuf tags are generic packet attributes that can be added to
any packet. Mbuf tags are mostly used by the IPsec code
and to prevent loops in the network stack when tunnelling
interfaces are used. Up until OpenBSD 4.2 pf used the mbuf
tags to store internal state information (pkthdr_pf). Every
packet needs this state information if pf is enabled. Moving
this structure from mbuf tags directly into the m_pkthdr
almost doubled performance. The main reason of this speed
up is that the allocation of mbuf tags is skipped. Mtag allo-
cation is slow because malloc(9) needs to be used to allo-
cate the dynamic length elements. Information that has to
be added to every packet should probably be directly
included in the packet header.

Network

Socket API

Network Stack

Routing
Table

m
bu

f

Driver

Userland
Kernel

110

OpenBSD – network stack internals Claudio Jeker

Figure 2: mbuf structures of two packets, 1st packet is built by
an mbuf chain of two mbufs (first mbuf with internal data

second with an external mbuf cluster).

Network Stack

Packets enter the network stack from userland through the
socket API or by the network driver receive interrupt func-
tion. Packets received by the network card enter one of the
layer 2 input functions -- ether_input() is the most com-
monly used one. This function decodes/pops off the layer 2
header and figures out the proper payload type of the data.
In the Ethernet case the ether_type is inspected but first it
is checked if it is a multicast or broadcast packet and the
corresponding mbuf flags are set. Depending on the payload
type an input queue is selected, the packet is enqueued and
a softnet software interrupt is raised. This interrupt is
delayed because IPL_SOFTNET has a lower precedence
then IPL_NET used by the driver interrupt routine. So the
driver can finish his work and when lowering the system
priority level the softnet interrupt handler is called. The
softnet handler checks netisr for any set bits and calls the
corresponding protocol interrupt handler. Most of the time
this is ipintr() or ip6intr() but the bridge, ppp and
pppoe code use the softnet handler as well. So the
splnet()/splsoftnet() dance has nothing to do with
the layer 2/layer 3 border.

ipintr() dequeues all packets in the protocol input queue
and passes them one after the other to ipv4_input().
ipv4_input() checks the IP header then calls
pf_test() to do the input firewalling. Now the destination
is checked and if the packet is not for this host it may be
forwarded. Local packets are passed to the transport layer.
Instead of hardcoding the corresponding handlers into
ipv4_input() a more object oriented approach is used by

calling the pr_input() function of a protosw structure.
The inetsw[] array contains the various protosw struc-
tures indexed by protocol family.

Figure 3: Network stack input flow

Common input functions are tcp_input(),
udp_input() and rip_input() -- rip stands for raw IP
and has nothing in common with the RIP routing protocol.
These input functions check the payload again and do a pcb
lookup. The pcb or protocol control block is the lower half
of a socket. If all is fine the packet is appended to the socket
receive buffer and any process waiting for data is woken up.
Here the processing of a network interrupt ends. A process
will later on call the soreceive() function to read out the
data in the receive buffer.
In the forward path a route lookup happens and the packet
is passed on to the output function.

Sending out data normally starts in userland by a write()
call which ends up in sosend(). The socket code then uses
the protosw pr_usrreq() function for every operation
defined on a socket. In the sosend() case pr_usrreq()
is called with PRU_SEND which will more or less directly
call the output function e.g. tcp_output() or
udp_output(). These functions encapsulate the data and
pass them down to ip_output(). On the way down the
output function is called directly (not like on the way up
where between the layer 3 and 4 the protosw structure was
used). In ip_output() the IP header is prepended and the
route decision is done unless the upper layer passed a
cached entry. Additionally the outbound firewalling is done
by calling pf_test(). The layer 3 functions invoke the
layer 2 output function via the ifp->if_output() func-
tion. For the Ethernet case, ether_output() will be
called. ether_output() prepends the Ethernet header,
raises the spl to IPL_NET, puts the packet on the interface

mtags mbuf

m
_n

ex
tp

kt

m_tag_id
m_tag_len

m_tag_id
m_tag_len

m_tag_id
m_tag_len

m_tag_link

m_hdr

m_pkthdr

pkthdr_pf

m_hdr

m_pkthdr

pkthdr_pf

m_ext

mbuf
cluster

mbuf
cluster

m_hdr

m_ext

m_next

m
_d

at
a

ext_buf

ext_buf

m_data

m_data

1st packet
2nd packet

driver rx interrupt

dequeue from DMA ring

ether_input

ieee80211_input

sppp_input
ppp_inproc
atm_input
fddi_input

trunk_input
vlan_input
bridge_input
carp_input

revarpinput

NETISRIPL_SOFTNET
IPL_NET

ipintr
ip6intr

ipv4_input ip6_inputpf_test

arpintr

in_arpinput

pppoeintr

pppoe_disc_input
pppoe_data_input

protosw inetsw[]

tcp_input udp_input rip_input

rip6_input

sbappend
sorwakeup

IPsec

L
ay

er
 4

L
ay

er
 3

L
ay

er
 2

L
ay

er
 1

S
o

ck
et

ip6_forwardip_forward

looutput

111

OpenBSD – network stack internals Claudio Jeker

output queue, and then calls the ifp->if_start() func-
tion. The driver will then put the packet onto the transmit
DMA ring where it is sent out to the network.

This is just a short fly through the network stack, in the real
world the network stack is much more complex due to the
complex nature of the protocols and added features. All the
control logic of the network stack is left out even though it
is probably the most obscure part of it.

Figure 4: Network stack output flow

Routing Table

The routing table uses the same patricia trie as described in
[1] even though minor extensions were done or are planned.
The routing table stores not only layer 3 forwarding infor-
mation but includes layer 2 information too. Additionally
the patricia trie is also used by pf tables. There is a lot of
magic in the routing table code and even minor changes
may result in unexpected side-effects that often end up in
panics. The interaction between layer 3 and layer 2 is a bit
obscure and special cases like the arp-proxy are easily for-
gotten. The result is that routing changes take longer then
expected and need to move slowly. Until now only routing
labels, multiple routing tables, and multipath routing were
implemented plus a major bump of the routing messages
was done. The routing messages structure was changed to
allow a clean integration of these features. Mainly the rout-
ing table ID had to be included into each routing header.

With a few tricks it was even possible to have some minimal
backward compatibility so that new kernels work with older
binaries.

Figure 5: Overview of the routing tables

Routing Labels
Routing labels were the first OpenBSD specific extension.
A routing label is passed to the kernel as an additional sock-
addr structure in the routing message and so the impact was
quite minimal. But instead of storing a string with the label
on every node a per label unique ID is stored in the routing
entry. The mapping is done by a name to ID lookup table.
Labels can be set by userland and pf can make decisions
based on these labels.

Multipath Routing
The implementation of multipath routing was initially from
KAME but additional changes were necessary to make
them usable. Especially the correct behaviour of the routing
socket was a challenge. Some userland applications still
have issues with correctly tracking multipath routes because
the old fact of one route one nexthop is no longer true.

Figure 6: rn_dupedkey and multipath routes

Multipath routing is abusing the possibility of storing the
same key multiple times in the routing table. This is allowed
because of possible more specific routes with the same net-
work address -- e.g. 10.0.0/24 and 10/8. Such identical keys

driver enqueue on tx DMA ring

ifp->if_start

ether_output

ieee80211_output

sppp_output pppoutput
atm_output
fddi_output

trunk_start
vlan_start

bridge_start

carp_output
ifp->if_output

IPL_SOFTNET
IPL_NET

ip_output ip6_output

pf_test

tcp_output
udp_output

rip_output rip6_output

protosw->pr_usrreq
sosend

IPsec

L
ay

er
 4

L
ay

er
 3

L
ay

er
 2

L
ay

er
 1

S
o

ck
et

udp6_output

ip_forward ip6_forward

bridge_output
arpresolve

nd6_storelladdr

carp_rewrite_lladdr

looutput

rt_tables[]

0

1

AF_INET

AF_INET6

af2rtafidx[]

radix_node_head

AF_INET AF_INET6

rt_entry

rt_labelid
rt_priority

rt_label
name2id

table

ifp

rt_entry
addr: 10.1.0/24
nexthop: 10.11.4.2

rt_entry
addr: 10.1.0/24
nexthop: 10.11.4.1

rt_entry
addr: 10.1/16
nexthop: 10.3.7.1

rn_dupedkey

rn_p

rn
_d

u
p

ed
ke

y

rn
_p

rn_p

112

OpenBSD – network stack internals Claudio Jeker

are stored in the rn_dupedkey list. This list is ordered by
prefix length -- most specific first -- so all multipath routes
are consecutive.

In the network stack some route look ups had to be
exchanged with a multipath capable version.
rtalloc_mpath() is the multipath aware route lookup
which has an extra attribute -- the source address of the
packet. The source and destination address are used to
select one of the multiple paths. rtalloc_mpath() uses a
hash-threshold mechanism[3] to select one of the equal
routes and routes are inserted in the middle of the list of
paths. This more complex mechanism to select and insert
routes was chosen to keep the impact of route changes
small.

Special sysctl buttons were added to enable and disable the
multipath routing:

sysctl net.inet.ip.multipath=1

and/or:

sysctl net.inet6.ip6.multipath=1

Without these sysctl values set multipath routing is turned
off even if multiple routes are available.

Multiple Routing Tables
Multiple routing tables are a prerequisite for VRF. The first
step in supporting virtual routing and forwarding is to be
able to select an alternate routing table in the forwarding
path.

Every address family has a separate routing table and all
routing table heads are stored in an array. With regard to
VRF it was considered the best to always create a full set of
routing tables instead of creating per address family specific
routing tables. If a new routing table is created the
radix_node_heads for all address families are created at
once, see Figure 5. pf(4) is used to classify the traffic and
to select the corresponding forwarding table. At the moment
it is only possible to change the default routing table in the
IP and IPv6 forwarding path. For link local addressing --
e.g. arp -- the default table is used.

VRF
The idea behind virtual routing and forwarding is the capa-
bility to divide a router into various domains that are inde-
pendent. It is possible to use the same network in multiple
domains without causing a conflict.

To support such a setup it is necessary to be able to bind
interfaces to a specific routing table or actually building a
routing domain out of a routing table and all interfaces
which belong together. On packet reception the mbuf is
marked with the ID of the receiving interface. Changes to
the layer 2 code allow the use of alternate routing tables not
only for IP forwarding but for arp look ups as well. With
this, it is possible to have the same network address config-
ured multiple times but completely independent of each
other.

To create a system with virtualized routing many changes
are needed. This starts with making the link local discovery
protocols (arp, rarp, nd, ...) aware of the multiple domains.
The ICMP code and all other code that replies or tunnels
packets needs to ensure that the new packet is processed in
the same domain. A special local tunnel interface is needed
to pass traffic between domains and pf may need some
modifications as well. Finally the socket layer needs a pos-
sibility to attach a socket to a specific routing domain. The
easiest way to do this is via a getsockopt() call.

Unlike the vimage[4] approach for FreeBSD not a full vir-
tualization is done. The main reason behind this different
approach is in my opinion primarily the originator and his
background. In FreeBSD, vimage was developed by net-
work researchers the idea is to be able to simulate multiple
full featured routers on a single box. Therefore vimage goes
further then the OpenBSD implementation by having multi-
ple routing sockets, protosw arrays and independent inter-
face lists. In OpenBSD the development is pushed by
networking people with an ISP background. The end result
is similar but the userland hooks are different. In OpenBSD,
userland will have access to all domains at once through
one routing socket so that one routing daemon is able to
modify multiple tables at once.

Routing Priorities
With the inclusion of bgpd, ospfd, and ripd the need for
userland to easily manage various routing source in the
kernel became more apparent. In case of conflicts it is nec-
essary to have a deterministic mediator between the differ-
ent daemons. E.g. prefixes learned via OSPF should have a
higher preference than external BGP routes. Routing suites
like xorp and quagga/zebra normally use a separate daemon
to merge these various routing sources. This is a single
point of failure and unnecessary because the kernel can do
this just fine. Similar to commercial routers this can be done
by the kernel by adding a priority to each route and giving
each routing source one specific priority level. With the
introduction of multipath routing it is possible to store a
route multiple times in the kernel. Having a cost for each
route and sorting the list of equal routes by the cost gets the
desired behaviour. Only the routes with the lowest cost are
used for routing -- in other words, this is now equal cost
multipath routing.

Figure 7: Using rn_dupedkey to implement priorities

rt_entry
addr: 10.1.0/24
nexthop: 172.16.4.1
priority: static [8]

rt_entry
addr: 10.1.0/24
nexthop: 10.11.4.1
priority: ospf [16]

rt_entry
addr: 10.1/16
nexthop: 10.3.7.1
priority: bgp [32]

rn
_d

u
p

ed
ke

y

rn
_p

rn_p

rt_entry
addr: 10.1.0/24
nexthop: 10.11.4.3
priority: ospf [16]

113

OpenBSD – network stack internals Claudio Jeker

Implementing this simple concept on the other hand
released some evil dragons in the current routing code.
Until now, the multipath code only had to handle inserts
after the head element which is no longer true. The initial
result were corrupted routing tables, crashes, a lot of head
scratching, and even more debugging. The routing code and
especially the radix tree implementation itself is complex,
obscure, and a very sensitive part of the networking code.

References

[1] TCP/IP Illustrated, Volume 2
by Gary R. Wright, W. Richard Stevens

[2] IPv6 Core Protocols Implementation
by Qing Li, Tatuya Jinmei, Keiichi Shima

[3] Analysis of an Equal-Cost Multi-Path Algorithm,
RFC 2992, November 2000

[4] The FreeBSD Network Stack Virtualization
http://www.tel.fer.hr/zec/vimage/
by Marko Zec

114

Reducing Lock Contention in a Multi-core system

by: Randall Stewart

Why do we lock?

With the advent of today's multi-core CPU's more

and more operating systems are moving to an

Symmetric Multi-Processor (SMP) environment!

Each operating system must thus find ways to

ensure sane and coherent operation when multiple

CPU's access the same data structures

simultaneously.

One of the most common coherency mechanisms

is the mutex.

115

Mutex's provide a simple gate that allows one CPU

to access a data structure while another waits its

turn.

In user land pthead_mutex's are available for this

purpose, but not so in the kernel.

In the FreeBSD kernel we have the “mtx”

structure.

Like pthread_mutex's these structures, once

initialized, can be locked and unlocked for

exclusive access to a data structure.

How do we lock in the FreeBSD

kernel?

An example used by the SCTP stack

in FreeBSD and MAC OS/X.

In the SCTP implementation we have quite

effectively used locking to allow a sender of data

(the socket api user) and the transmitter of data (the

interface interrupt task) to share a data structure via

a mutex.

Socket Sender

Interrupt Task
Send mtx.

116

With a simple scheme

With this simple scheme we solve the locking

problem and our two or more CPU's do not have a

problem.

However we gain one down-side, lock-contention.

Lock contention is how often one thread holds the

lock while the other has it.

The less lock contention, the more parallel our

process will be and thus we will better utilize the

multi-core systems we have available.

So how can we measure lock

contention?

FreeBSD comes with a kernel level tool-kit for this

very purpose.

If we build our kernel with the

“LOCK_PROFILING” option we can measure our

lock contention. (man LOCK_PROFILING)

Our config file looks like:

....

options LOCK_PROFILING

...

Build the kernel in the usual way and reboot

117

Getting a “lock profile” run

Lock profiling on your new kernel is NOT enabled

by default.

You can turn on/off/examine lock profiling by:

sysctl -a | grep lock | grep prof | grep debug

debug.lock.prof.stats: No locking recorded

debug.lock.prof.collisions: 0

debug.lock.prof.hashsize: 4096

debug.lock.prof.rejected: 0

debug.lock.prof.maxrecords: 4096

debug.lock.prof.records: 0

debug.lock.prof.acquisitions: 0

debug.lock.prof.enable: 0

Getting a “lock profile” run

Change the enable flag to 1.

sysctl -w “debug.lock.prof.enable=1”

Now run any tests that you want to profile.

After you are done change the sysctl back to '0'

Now do a sysctl -a > my_file.txt

Vi/emacs your file and scan down until you find the

symbol debug.lock.stats

You should see a header/numbers that look like
max total wait_total avg wait_avg cnt_hold cnt_lock name

And lots of numbers.

118

Max – the max time this point waited in microseconds.

Total – the total hold time in microseconds.

Wait_total – the total accumulated wait time.

Count – the number of times this lock was at this point **

Avg – The average hold time in microseconds.

Wait_Avg – the average wait time in microseconds.

Cnt_hold – The number of times this lock was held when

someone else wanted it. **

Cnt_lock = The number of times someone else held the lock at

this point **

Lock name – the lock name and file and line number.**

Mutex Profiling results

Count Count hold Count lock Lock Name
sctp_output.c:5140
sctp_output.c:6454
sctp_output.c:11088
sctp_output.c:11170
sctp_output.c:11375

0
551
52
5631
4

0
5571
11
503
5

12
12240
12240
59394
12240

Socket sender
Interrupt transmitter

An Example
Socket Sender

Interrupt Task
Send mtx.

119

An Example

Count Count hold Count lock Lock Name
sctp_output.c:5140
sctp_output.c:6454
sctp_output.c:11088
sctp_output.c:11170
sctp_output.c:11375

0
551
52
5631
4

0
5571
11
503
5

12
12240
12240
59394
12240

45.5% of the time its held here
4.5% of the time someone wants the lock when held

An Example

Count Count hold Count lock Lock Name
sctp_output.c:5140
sctp_output.c:6454
sctp_output.c:11088
sctp_output.c:11170
sctp_output.c:11375

0
551
52
5631
4

0
5571
11
503
5

12
12240
12240
59394
12240

0.8% of the time its held here
9.4% of the time someone wants the lock when held

120

So how can we reduce contention

and preserve sanity?

Socket Sender

Interrupt Task
Send mtx.

struct name {
struct type *tqh_first; /* first element */
struct type **tqh_last; /* addr of last next element */

};

Is really

Where
struct name {

struct type *tqh_first; /* first element */
struct type **tqh_last; /* addr of last next element */

};

The socket sender always appends to the tail

The interrupt transmitter always pulls from the head

and may not always pull the whole message off

(considering that a msg can be larger than the

PMTU).

So can we reduce locking?

121

We can observer about the sender
struct name {

struct type *tqh_first; /* first element */
struct type **tqh_last; /* addr of last next element */

};

The sender never knows if the transmitter is active

and is never sure if the list is empty or has entry's on

it (tqh_last points to the head when empty).

When adding data, we only use tqh_last.

But without foreknowledge the socket sender MUST

always lock the structure.

We can observer about the

transmitter
struct name {

struct type *tqh_first;
struct type **tqh_last;

};

But what about the transmitter?

It does know:
If it is going to pull the entry off.

It can tell if there is already a next entry on the queue.

EntryEntry Entry NULL

122

We can observer about the

transmitter when Pulling an entry.
So from this knowledge could we:

Only lock if we will pull the entry from the queue?

Don't lock if there is a next item in the queue (since the

other thread is inserting there)?

EntryEntry Entry NULL

Entry NULL

No Lock

Must Lock

So what about contention on the

same entry, when more data is

added?

The data being added by the socket sender is a chain

of mbufs.

NULLEntry

struct sctp_stream_queue_pending {
struct mbuf *data;
struct mbuf *tail_mbuf;
struct timeval ts;
struct sctp_nets *net;
TAILQ_ENTRY (sctp_stream_queue_pending) next;
uint32_t length;

123

So what about contention on the

same entry, when more is added?

If we always update the size last, after appending, then the transmitter

will always see either the correct size, or a reduced size.

Since we use mcopym() with the size, this limits us so when

contending for one being added the most that can happen is we will

take less than we could have.

Note that we use atomic_add_int() to assure a barrier and that the

compiler does not give us a surprise.

struct sctp_stream_queue_pending {
struct mbuf *data;
struct mbuf *tail_mbuf;
struct timeval ts;
struct sctp_nets *net;
TAILQ_ENTRY (sctp_stream_queue_pending) next;
uint32_t length;

So what two things is the transmitter

doing?

When it goes to add data, don't get a lock unless the

size of the copy will exhaust the mbuf completely.

This allows continued addition to a message without

the transmitter locking.

When the transmitter decides to remove an entry it

will only lock if the “next” pointer is NULL.

124

Results after our modification

Count Count hold Count lock Lock Name
sctp_output.c:5141
sctp_output.c:6517
sctp_output.c:11151
sctp_output.c:11437

4
16
232
0

64
157
19
1

288
344
33549
45787

Note that the redesigned algorithms have one less lock.
Socket sender
Interrupt transmitter

The results show

A huge drop in the percentage that the socket sender

contends with the transmitter from 45% to .02%

Very rarely does the transmitter even get a lock, its

still a high percentage of contention but with a drop

from 12,252 lock requests to 632.

125

Conclusion

When adding a shared resource to a SMP O/S one

needs to:
Carefully consider your data structures that the various

locks protect.

Examine the level of lock contention.

Try to craft mechanisms that allow one of the

threads/cpus to NOT lock when possible.

No two problems are the same but the base concept

presented here can be applied to both kernel and user

level code.

Other things that can be done in

Kernel land (use with caution)

When wanting to cache resources for quick re-use

per CPU lists can be created.

One can use the critical_enter/critical_exit call to

prevent being scheduled.

The code would look something like:

free_item(entry_t *item) {

critical_enter();

cpu = curcpu;

LIST_INSERT_HEAD(&cache[cpu].list,

item, next);

critical_exit(); }
126

Sleeping Beauty – NetBSD on modern laptops

Jörg Sonnenberger <joerg@NetBSD.org>
Jared D. McNeill <jmcneill@NetBSD.org>

February 3, 2008

Abstract

This paper discusses the NetBSD Power Management Framework (PMF)
and related changes to the kernel. The outlined changes allow NetBSD to
support essential functions like suspend-to-RAM on most post-Y2K X86
machines. They are also the fundation for intelligent handling of device
activity by enabling devices on-demand.

This work is still progressing. Many of the features will be available
in the up-coming NetBSD 5.0 release.

1 Introduction

The NetBSD kernel is widely regarded to be one of the cleanest and most
portable Operating System kernels available. For various reasons it is also as-
sumed that NetBSD only runs well on older hardware. In the summer of 2006
Charles Hannum, one of the founders of NetBSD, left with a long mail men-
tioning as important issues the lack of proper power management and suspend-
to-RAM support. One year later, Jared D. McNeill posted a plan for attacking
this issue based on ideas derived from the Windows Driver Model. This plan
would evolve into the new NetBSD Power Management Framework (PMF for
short).

Major design goals were:

• The ability to suspend a running system, possibly including X11, and to
restore the same state later.

• The ability to disable devices and restore the full state. This includes e.g.
volume and current playback position for audio devices etc.

• Automatically sense which devices are not in use and place them into
reduced power states.

• Provide a messaging framework for inter-driver communication for event
notifications, e.g. hotkeys pressed by the user.

This paper will provide an overview of the core changes to the NetBSD
kernel, the goals that have been achieved, and the challenges that have been
faced along the way.

The first section will cover the PMF itself as it is the component with the
greatest impact on the overall kernel. Afterwards the AMD64 and i386 specific
changes to the ACPI infrastructure will be discussed. Last but not least is the
special handling needed for video cards needed on many systems.

127

2 The NetBSD Power Management Framework

2.1 Overview

The NetBSD Power Management Framework (PMF) is a multi-layer device
power management framework with inter driver asynchronous messaging sup-
port. It was originally inspired by the Windows Driver Model power man-
agement framework, but has since evolved into a model better fitting for the
NetBSD kernel. The implementation is contained in:

• sys/kern/kern pmf.c,

• sys/sys/pmf.h, and

• sys/kern/subr autoconf.c.

2.2 Device interface

Device power management is implemented in layers:

• Device,

• Bus,

• Class (ie network, input, etc).

The basic entry points for a device driver to implement the PMF are pmf de-
vice register(9) and pmf device deregister(9). Both of these functions accept a
device t as their first argument, and in the registration case it also accepts
optional driver-specific suspend and resume callbacks. These functions return
true on success, and false on failure.

Device bus power management support is inherited from the parent device
in the autoconfiguration tree. A device driver that attaches to the pci(4) auto-
matically inherits PCI Power Management support. The PCI bus handlers take
care of saving and restoring the common part of the PCI configuration part.
They are also responsible for removing power from the device and restoring it.

Device class power management support cannot be derived as easily, so a
device driver that requires class-level power management support will call the
appropriate pmf class <type> register and deregister functions when register-
ing with the PMF. The currently implemented power management class types
are ’network’, ’input’, and ’display’. Depending on the device class the regis-
ter function takes additional arguments, i.e. the “struct ifnet” address for a
network device.

Using this layered approach, the amount of duplicated code between device
drivers is reduced and the per-driver code minimized. One example of where
this is the wm(4) network driver. Since the PCI bus layer captures and restores
common PCI configuration registers and the network class layer is responsi-
ble for stopping and starting the interface, no additional device specific power
management code is required. Other device drivers such as bce(4) simply need
a single function call in their resume callback (with no suspend callback) to
restore the device to a fully operational state.

Due to its integration with the autoconfiguration subsystem, a device t is
required to register with the PMF. This differs from the former powerhook(9)

128

framework in previous NetBSD releases, which implemented global system sus-
pend/resume by executing callbacks in order of registration with an opaque
cookie for an argument. This interface made it impossible to control the order
in which devices are suspended or resumed. With the PMF, global system sus-
pend/resume is implemented by traversing the autoconfiguration device tree,
ensuring that a device’s parent is powered up before it is initialized and that a
child device is suspended before its parent bus.

The most basic interfaces from kernel code to control device power are
pmf device suspend(9) and pmf device resume(9). A power management de-
vice driver will typically want to suspend and resume the entire autoconfig-
uration tree or a subtree. In the case of a global power state transition,
the power management device driver would use the pmf system suspend(9),
pmf system resume(9), and pmf system shutdown(9) APIs. The “suspend” and
“shutdown” functions are nearly the same with the exception of two points; a
suspend will be aborted directly if any device in the autoconfiguration tree does
not implement the PMF, and a shutdown does not invoke the bus power manage-
ment layer support. Some additional support functions are available for power
management drivers; pmf device recursive resume(9), pmf device recursive sus-
pend(9), and pmf device resume subtree(9). The first function can be used to
resume a specific devices and all its parents. The other functions suspend or
resume a subtree of the autoconfiguration tree.

Suspending drivers on shutdown using pmf system shutdown(9) avoids the
problem of active devices trashing the system after a reboot e.g. with DMA.
A number of drivers did this with ad hoc shutdown hooks before and doing it
in the PMF provides it consistantly for all devices. This part the PMF will be
extended at some point in the future to provide a separate optional hook for
finer control.

2.3 Event interface

The PMF introduces a message passing framework for inter-device driver com-
munication. Events can be directed (targetted to) a specific device, but in the
most typical case anonymous events are used. An anonymous event is essentially
a broadcast notification to all device drivers registered for that event.

One issue with making laptops “just work” was that there was no mechanism
to associate a hotkey event with an appropriate action. Making decisions on
how to handle events entirely in a userland script was considered too much of a
kludge, so it was decided that an inter-driver event framework was necessary.

Consider brightness control hotkeys on a laptop. Every hardware vendor
implements this in a different way, and the device that generates the hotkey
event is not necessarily the same device that gives control of the LCD backlight.
A hotkey device driver simply uses the pmf event inject(9) function to inject
a brightness control event (PMFE DISPLAY BRIGHTNESS UP, PMFE DIS-
PLAY BRIGHTNESS DOWN) into the pmf event queue. A worker thread is
then woken up, and scans the list of callbacks created using the pmf event regis-
ter(9) and pmf event deregister(9) functions. Since this is an anonymous event
(device t argument to pmf event inject(9) is NULL), all callbacks registered
for the appropriate PMF DISPLAY BRIGHTNESS * event are executed. The
hotkey driver does not need to know or care if the console driver, generic ACPI
display driver, vendor-specific ACPI device driver, or other power control driver

129

will handle the event. As long as one of these drivers is present and working,
the brightness key press will “just work”.

For events that are better handled in userland, hotkey support was added to
sysmon power(9) and powerd(8). This is typically used for associating a ”lock
screen” key with xscreensaver, a ”display cycle” key with xrandr, ”eject” key
with a DVD-ROM tray, and so on.

2.4 Vendor and model specific information

Sometimes there is no choice but to only apply a quirk in a device driver on
certain hardware platforms. A very simple API was added to the PMF to act
as a dictionary for obtaining information about the running system from within
device drivers. Platform dependent code is responsible for filling in these tables;
on AMD64 and i386 information retrieved from DMI (aka SMBIOS) tables are
used.

The sony acpi(4) driver uses this to apply workarounds in its initialization
routines on certain VAIO series notebooks.

3 ACPI improvements

3.1 ACPICA

The Intel ACPI Component Architecture (ACPICA) is an OS-independent ref-
erence implementation of the ACPI specification. NetBSD 4.0 shipped with the
two year old 20060217 release of the ACPICA, so it was decided that the third
party code should be updated to a newer release.

At the time of the ACPICA upgrade the latest version of ACPICA available
from Intel was 20061109, but it was known that other operating systems were
shipping newer releases. As the APIs are constantly evolving, a significant
amount of integration effort would have been been required regardless of the
release selected. It was decided to go with the release of ACPICA present in
FreeBSD -CURRENT at the time, 20070320.

The majority of changes required for the new APIs were mechanical, related
to renamed structures and structure members. Another issue involved a change
in the way that tables are accessed; previous releases of ACPICA pre-parsed
some tables and stored them in global pointers. This has been changed in some
cases to store a copy of the table in a global structure, and in other cases the
Operating System must map the table itself using AcpiOsMapMemory.

The operating system dependent (Osd) interfaces were also changed. The
following functions had minor signature changes:

• AcpiOsMapMemory,

• AcpiOsWaitSemaphore,

• AcpiOsAcquireLock,

• AcpiOsDeleteLock,

• AcpiOsGetRootPointer,

• AcpiOsGetThreadId.

130

In addition, new functions such as AcpiOsValidateInterface and AcpiOsVal-
idateAddress were required, and AcpiOsQueueForExecution was renamed to
AcpiOsExecute.

In the process of tracing down various interrupt issues, the ACPI initial-
ization sequence was updated. The initialization was split into two phases.
The first phase is just long enough to load the MADT. That table is required
for interrupt setup, especially when using the IOAPIC. The second phase can
therefore directly hook up the ACPI System Configuration Interrupt and finish
the initialization sequence. This replaces the lazy interrupt setup code in the
AMD64 and i386 code.

This ACPICA update exposed a fundamental design flaw in the NetBSD
Embedded Controller driver, requiring it to be rewritten from scratch.

Since this work has completed a new ACPICA web site, http://www.acpica.
org, has appeared offering a 20080123 release for download.

3.2 Embedded Controller

The Embedded Controller (EC) is one of the central hardware components of
ACPI. The ACPI virtual machine is using the EC to access various devices
without requiring the attention of the CPU. It is also used by the hardware
to notify the ACPI VM about changes in the system configuration using the
System Configuration Interrupt (SCI).

The EC has a very simple interface using two one-byte ports. The first port
is used to send commands to the EC and read back the current processing status.
The second port (data port) is used for operands of the commands. The EC
understands the five commands “query”, “read”, “write”, “enable burst” and
“disable burst”. Operands like the address of a “read” or “write” or the return
value for a “query” are transfered using an internal buffer in the EC. When this
buffer is empty and new data can be send, a flag is set and an interrupt is sent.
The same happens for reading data from the EC.

This interface forces the driver to communicate asynchronously with the
hardware. As this is often undesirable, the burst mode was added. It allows a
driver to send commands and data back-to-back with the full attention of the
EC. If the EC can’t process a command in a timely manner, it can disable the
burst mode itself.

The old EC driver as inherited from FreeBSD tried to deal with this mess
by using a mixture of interrupt mode and polling mode. It was very hard to
follow the flow of control and add locking without introducing dead locks. For
that reason, the EC driver was rewritten from scratch as part of the jmcneill-pm
branch.

The first important observation for the new driver was the symmetry between
the entry points. The driver has to deal with three request types: reads, writes
and SCIs. SCIs are special events raised by the EC, read and write operations
are originated in the system. The access to the driver can therefore be serialised
by a single mutex shared between the three entry points. For the processing of
the SCIs a kernel thread is the simplest solution, but a work queue could have
been used as well.

The second observation for the driver design is that most of the complications
in the interface are a result of not using the state flow of the EC in the driver.
The actions in the driver are much easier to formulate as finite state machine.

131

As soon as one of the the entry points obtains the driver lock, it writes the
address for read or write access and the command to process. Afterwards it just
waits for completion. The interrupt handler drives the state machine. If it finds
a request for a SCI, it signals the kernel thread to wake up. Depending on the
state of the machine, it writes the address or transfers the data byte. When a
command is done, it wakes up the blocking originating thread.

One problem of this approach is that it depends on the hardware properly
sending interrupts. Many EC implementations don’t do that though. Linux
and FreeBSD dealt with this by using the burst mode. A simpler alternative is
to just poll the hardware after some time using a callback. In other words, if
the hardware doesn’t send an interrupt, simulate it.

The second problem is that during early boot, suspend and resume neither
interrupts nor timeouts are processed. Polling the EC directly is similiar again
to how lost interrupts are processed. Experiments have shown that spinning a
bit is generally helpful as most EC commands finish in less than 5ms. Polling
has to be done with care though. On a Lenovo Thinkpad R52, a busy loop
without delay completely kills the EC, it doesn’t even provide the emergency
powerdown. Similiar issues exist with other vendors. Tests have shown that at
least 100ms intervals are needed for pure polling.

The new driver has proven to be robust and much easier to adopt to new
vendor bugs.

3.3 Suspend support

Proper support for suspend to RAM is one of the most often requested features
in the Open Source world. The Advanced Power Management interface pro-
vided this without much complexity in the Operating System. As Microsoft has
pushed ACPI for a long time, vendor support for APM started to disappear.
For ACPI based suspend to RAM the Operating System is responsible for most
of work. The first part of the process is saving all device state and preempting
them. This is part was addressed in section 2.2. The second part is saving the
CPU state and calling the firmware. NetBSD inherited the S3 support for i386
from FreeBSD. The support was working, but lacking in two importants areas.
S3 was not possible on AMD64 and it only worked with a Uniprocessor kernel.
With the advent of Intel’s Core 2 in consumer notebooks both limitations had
to be fixed.

This was addressed in two parts. First, the ACPI wake code was ported
to AMD64 and later it was extended to handle Application Processors (APs).
The wake code is called by the firmware almost directly after the resume. At
this point, the CPU is still running in Real Mode. For switching to Protected
Mode part of the address space has to be mapped to the same address in virtual
and physical address space. The code inherited from FreeBSD solved this by
adding the address of the wakecode to the kernel map, even though the kernel
map normally doesn’t cover this address range. This was fixed by using a
temporary copy of the Page Directory and a special Page Table, both located
in low memory. The wakecode enables paging using this temporary copy and
switches to the normal version in a second step. For the AMD64 port this was
crucial as the switch to Long Mode needs the equivalent of the Page Directory
under the 4GB limit. The only major surprise left for the AMD64 port was the
trap when a page has the NX bit set and the feature was not enabled already.

132

The first attempt at multiprocessor support was to migrate all threads from
the APs and let them just idle. On resume the bootstrap was repeated as it
is done during the normal boot. This worked somewhat as the APs came back
to live, but they hit an assertion in the process scheduler pretty soon. This
assertion didn’t make any sense as it essentially meant that the idle thread was
not scheduled.

The second try utilised the already working wakecode. The wakecode was
changed to use storage in the CPU specific data instead of global variables. On
suspend, the APs follow the same code path as the primary CPU and on resume,
they are recovering exactly the state they were in before. After the first try on
a Intel Core 2 system, the system crashed with the same assertion as during the
first attempt.

Further debugging revealed that both cores disagreed on the state of the idle
thread of the second core. This suggested a cache synchronisation problem and
it turned out that the modifications of the second core where still in the L1 cache
and not written back to main memory, when the suspend occured. The first
core does an explicit invalidation before suspend, but it become obvious that
the L1 cache of the second core was not affected by this. Adding the necessary
flush before halting the second CPU fixed the problem.

At this point, an optimisation for the pmap module was added and the kernel
changed to always use large pages to map the code segment, if the hardware
supports it. This broke the i386 resume again. Just as the use of the NX bit,
large pages had to be enabled earlier.

The wakecode is been improved in non-functional ways. One important
change was to not use double return (like longjmp). The code flow was instead
reorganised so that the suspend is entered from a leaf function. One side effect
of this change is that the amount of state to save and restore has reduced as
only caller-save registered are now volatile.

Further work in this area is to merge the MP bootstrap code with the ACPI
wakecode. The former is almost a subset of the wakecode now. The change
would allow moving the resource allocation and state setup from assembly code
on the APs into the high-level code running on the AP, resulting in more sim-
plifications.

4 Video card handling

Of all hardware in a modern PC, the most problematic part for a successful
resume is the video card. One reason for this is the great variety of incompatible
chips. Another reason is the complete lack of interface descriptions for many
graphic chips.

The first approach to this problem is just calling the Power On Self Test
(POST) code in the VGA BIOS before switching to protected mode. This has
been available for a long time as option and works on a number of systems. The
function depends on the firmware restoring the state of the main PCI bridges
and the VGA device, which doesn’t happen e.g. on Dell machines.

The second approach is a userland program called vbetool. The program
either uses VM86 or a real mode software emulator to execute the POST code
after the PCI code has restored the generic register set. This fixes the majority
of the remaining systems. The biggest problem is that it doesn’t allow you to

133

recover the display early enough to see and debug problems in the other drivers.
The third approach is to implement the necessary functions in chipset-

specific drivers. This is actively worked on as part of the DRM code, but it
is unlikely to address older, undocumented chips.

As part of the power management work a variation of the second approach
was added. A size optimised version of x86emu (as used by XFree86 and vbetool)
was added to NetBSD. This code allows doing the POST directly from within
the kernel. Using VM86 mode would be an option for i386, but for AMD64.
The CPU emulation is complemented by an emulation of the i8254 (the AT
timer) to prevent the BIOS from destroying the kernel configuration.

The in-kernel VGA POST is still work-in-progress, but the goal is to com-
pletely replace vbetool and the early POST call.

5 Conclusion and future work

The jmcneill-pm branch and the related changes post-merge were a great suc-
cess. Most laptops are now able to use ACPI based suspend-to-RAM. The
number of systems that can’t use ACPI for system configuration was greatly
reduced as well. Work continues to fix any regressions left and identify remain-
ing problems with ACPI on older hardware. Extending the ACPI S3 support is
also part of the plan for NetBSD 5 to ship SMP enabled kernels by default.

The fine grained idle control of devices is still under investigation. The
current implementation for audio devices has problems with uaudio(4) due to
the architecture of the USB stack. Further extensions are planned though. The
cardbus network drivers are currently powering down the card if it is not up.
This is desirable for PCI devices as well.

The interface for device power management is focusing on making it easy
to add support to an existing driver. It currently doesn’t allow drive-specific
logic for wake up events or multiple power states. The PCI support is currently
limited to D0 and D3hot. Future work will exploit interface to support fast
resume states like D1 and physically removing the power based on bridge logic
(D3cold).

The event interface is used for handling many of the modern special buttons
in the kernel. Future work will extend this to interact with userland components
like Gnome.

The video BIOS access based on x86emu will be used for vesafb as well.
Long term goal is making vesafb work on any platform with PCI devices.

To summarize the changes it is clear that NetBSD has caught up to Linux
in many critical areas. The biggest remaining tasks are converting the various
drivers in the kernel to support suspend/resume and to investigate the available
mechanisms on other hardware architectures like ARM.

134

