
Logical Resource Isolation in the NetBSD Kernel

Kristaps Džonsons
Swedish Royal Institute of Technology, Centre for Parallel Computing

kristaps@kth.se

Abstract

Resource isolation is a strategy of multiplicity, the
state of many isolated contexts within a parent
context. Isolated resource contexts have func-
tionally non-isomorphic resource mappings: con-
texts with equivalent domain identities map to
non-intersecting ranges in the resource co-domain.
Thus, in practise, if processes a and b return dif-
ferent values to an equivalent identity (say, for the
hostname), then the callee context, for this iden-
tity, demonstrates resource non-isomorphism. Al-
though isolation is by no means a new study in
operating systems, the BSD family offers few im-
plementations, at this time limited to FreeBSD’s
Jail and, potentially, the kauth(9) subsystem in
NetBSD. These systems provide a framework with
which one may construct isolated environments by
cross-checking and switching over credentials at the
kernel’s boundary. In this document, we consider
a radically different approach to resource isola-
tion: instead of isolating at the kernel boundary,
we consider a strategy of collecting entire kernel
sub-systems into contexts, effecting bottom-up re-
source isolation. This document describes a work-
in-progress, although a considerable implementa-
tion exists1.

1 Introduction

Resource isolation may strictly be defined as a
non-isomorphic mapping between unique resource
identities (the domain) and mapped entities (co-
domain): multiple contexts, with the same domain
identity, mapping to non-conflicting range entities.
Instead of a single, global task context, where all

1See http://mult.bsd.lv

tasks have a common mapping, resource isolation
implies a set of contexts, with set members defined
by the commonality of their mapping function. Our
use of the term resource, in this regard, refers to
mutable entities.

In practise, resource isolation provides Unix pro-
cesses (“tasks”) a different view of their environ-
ment depending upon the context. For example,
a particular process a, if isolated, may only view
processes in its calling context A, while another
process, b, can only see processes in its context B.
The contexts A and B are non-overlapping; in other
words, no process in A can see into B and vice-
versa. Conventional Unix environments, contrarily,
are non-isolated (or isolated to a single context).

In this document, we use set notation to describe
tasks and resources. We define a mapping function
f to accept a resource identity x and produce an
entity y. The set of resources available to a task is
f(x0) . . . f(xn), or, equivalently, y0 . . . yn mapped
from x0 . . . xn. Resource isolation implies a set F =
{f0 . . . fk}, where the ranges of any two fi are non-
overlapping. Thus, in a traditional Unix system
with a single, global resource context, F = {f0}.
This single context f0 has an equivalent range and
co-domain.

We consider each f to be a black-box within the
kernel, and F defines the kernel proper. In practise,
this decomposes into each f ∈ F having a unique
identifying credential; two resource requests, for ex-
ample, for the hostname, correspond to a single fi

in the case of a single-context environment, and fi

and fj in a multiplicity environment. We consider
“resources” in the broad sense as system calls or in
the fine sense as system calls combined with par-
ticular arguments.

The complexity of our example isolation scenario

71



is considerable: there are many elements entangled
in a process. In order to be isolated, the set of con-
texts must be injective; in other words, a co-domain
entity may be mapped from only one domain iden-
tity. A process abstracts considerable complexity:
a process is composed of memory maps, file de-
scriptors, resource limits, and so on. To isolate one
process from another, all non-injective conditions
must be removed. For example, although process a
may not be able to signal process b, it may try to
affect it by changing resource limits, or manipulat-
ing the controlling user. If any of these resources
conflict, then isolation is not maintained. We call
these conditions resource conflicts.

A resource conflict may be effected both directly
and indirectly. In the former case, a breach could
occur if a were able to signal b using a non-standard
signalling interface (through, e.g., emulated system
calls that bypass the isolation mechanism). In the
latter case, improperly isolated user checks could
allow a to affect b by changing user resource limits.
Since f(xj) = yc and f ′(xj) = yc, the system is no
longer isolated.

In this document, we’ll propose a system that im-
plements resource isolation in order to provide effi-
cient multiplicity without sacrificing elegance. Be-
fore discussing the methods of this system, we’ll
consider the reason for its implementation; in other
words, why we chose to implement a new design
instead of re-using existing systems. In order to
properly discuss these systems, we’ll introduce an
informal taxonomy for multiplicity systems.

2 Terminology

In this section, we refine our introductory notation.
Since multiplicity has many different forms, it’s dif-
ficult to introduce a generalised notation that cov-
ers all scenarios. In the previous section, we used
the term context to describe the mapping f ∈ F .
We now introduce the term “operating instance”.

Definition If x is a resource identity (e.g., system
call), and y0 is the entity mapped by f0, with f1

producing y1 where f ∈ F and y ∈ Y , then we
define each f ∈ F as an operating instance in a
multiplicity system if and only if there are no two

fi ∈ F returning the same y for a identity x.

In practise, multiple operating instances in a multi-
plicity system may only exist if there are no conflict
points where fi(x) = fj(x) = y. In the introduc-
tory section, we used the term resource isolation to
define this property; in this section, we introduce
the notion of operating instances as those entities
with isolated resources.

The existence of an operating instance doesn’t nec-
essarily imply instance multiplicity: in a standard
Unix system, there always exists one operating in-
stance. The property of multiplicity arises when
the co-domain Y is completely partitioned into
ranges of f ∈ F , where no y ∈ Y conflict.

Definition A system may claim operating in-
stance multiplicity when there are multiple non-
overlapping ranges in the resource co-domain,
mapped from different f ∈ F .

In this document, we consider only operating in-
stance multiplicity. There are other targets of mul-
tiplicity, like operating system multiplicity, which
will be addressed only in passing.

3 Scenario

There are many scenarios involving multiplicity:
service consolidation, testing, containment, redun-
dancy, and so forth. We choose three common
multiplicity scenarios that, as we’ll see, span the
diapason of multiplicity strategies. It’s important
to stress that this analysis is of operating instance
multiplicity: we disregard, for the moment, scenar-
ios calling for whole operating system multiplicity.
This isn’t the focus of this paper, as many well-
known operating system multiplicity systems exist
for the BSD family.

We’ll primarily focus on a cluster computing envi-
ronment. In this environment, we must allow for
many distinct process trees with isolated resource
contexts, preferably rooted at init(8), all of which
are completely contained from one another. There
must be negligible over-head in the isolation mech-
anism; more importantly, these systems must start

72



and stop extremely quickly, so as to offer fine-
grained scheduling of virtual environments on the
processor. There must be thousands of potential
instances, all, possibly, running simultaneously on
one processor. In an alternate scenario, some in-
stances may have priority over others; some, even
further, may be entirely suspended, then restarted
later. This document focusses largely on the in-
kernel isolation strategy for such a system.

We also consider a virtual hosting environment.
Like in cluster computing, we account for the pos-
sibility of many instances competing for resources.
Unlike in cluster computing, we consider that the
run-time profile for these systems is roughly sim-
ilar; thus, sharing of code-pages is essential. Fur-
ther, while cluster computing stresses the speedy
starting and stopping of instances, virtual hosting
emphasis fine-grained control of resources which are
likely to remain constantly operational to a greater
or lesser extent.

In both of these scenarios, each process must have a
conventional Unix environment at its disposal. We
decompose the term “resource” into soft and hard
resources: a soft resource is serviced by the ker-
nel’s top-half (processes, memory, resource limits,
etc.), while a hard resource is serviced by a physi-
cal device, like a disc or network card. Our scenario
doesn’t explicitly call for isolation between hard re-
sources (we consider this a possibility for future
work); an administrator may decide which devices
to expose by carefully constructing dev nodes.

4 Related Work

At this time, of the BSD operating system fam-
ily, only FreeBSD Jail[3] offers a complete isolation
mechanism. Jail attaches structures to user creden-
tials that define guest contexts within a host con-
text. Guests have a resource range that is a strict
subset of the host; all guests have non-intersecting
ranges while the host’s range is equivalent to the co-
domain (thus, is allowed to conflict with any guest).
FreeBSD Jail structures isolate primarily in terms
of soft resources: the only isolated hard resources
are the network, console, and pseudo-terminal in-
terfaces. The Jail system first appeared in FreeBSD
4.0.

NetBSD 4.0 includes kauth(9)[1], which orches-
trates the secmodel(9) security framework. This
system allows kernel scopes (resource identity cate-
gories) and their associated actions (resource re-
quests) to be examined by a pool of listeners.
Scopes and actions are correlated with calling cre-
dentials and relevant actions are produced. This
doesn’t provide isolation per se, but we can, as-
suming other changes to the infrastructure and an
implementing kernel module, envision a sytem in-
terfacing with kauth(9) to provide in-kernel isola-
tion.

We specifically disregard NetBSD-Xen (and other
full-system virtualisers, including the nascent
DragonFlyBSD vkernel(7)) from our study, as the
memory overhead of maintaining multiple guest im-
ages is considerable and violates our stipulation for
many concurrent contexts. Both of these systems
full into the category of operating system multi-
plicity systems: instead of resource isolation, these
virtualise the hardware context invoked by the gen-
eralised resources of an operating system. The
overhead of this virtualisation is considerable. In
general, we disregard operating system multiplicity
systems (such as QEMU, Xen, and so forth) due to
the high practical overhead of hosting virtualised
images or manipulating them.

Furthermore, we also discard the ptrace(2) and
systrace(2) mechanisms and inheriting isolation
systems. The latter is being deprecated from the
BSD family, while the former (which may suffer
from the same error as the latter) requires con-
siderable execution overhead to orchestrate. The
kauth(8) mechanism, which will be discussed, may
be considered an in-kernel generalisation of these
systems.

Lastly, this document does not consider non-BSD
kernel isolation mechanisms, of which there are
many. Most of these systems are implemented us-
ing strategies equivalent to FreeBSD Jail, enacting
functional cross-checks, or as kauth(9) through se-
curity policies. Linux has several implemented sys-
tems, such as OpenVZ and VServer, and Solaris
has Zones.

73



5 Issues

There are a number of issues with the available sys-
tems. The most significant issue with both avail-
able systems is the strategy of isolation: check-
points within the flow of execution, instead of log-
ically isolating resources in the kernel itself. The
former strategy we call functional resource isola-
tion, which is an isolation during the execution of
conflict points.

In FreeBSD Jail, prisons are generally enforced by
cross-checks at the system call boundary. For in-
stance, a request to kill(2) from process a ∈ A
to b ∈ B (as in our above scenario) is intercepted
and eventually routed to prison check(9) or sim-
ilar function, which checks if the prison contexts
are appropriate. In the Jail system, a host may af-
fect guests, but guests may not affect each other or
the host. Each potential conflict between process
resources must be carefully isolated:

int
prison_check(struct ucred *c1, struct ucred *c2)
{

if (jailed(c1)) {
if (!jailed(c2))

return (ESRCH);
if (c2->cr_prison != c1->cr_prison)

return (ESRCH);
}
return (0);

}

This function, or similar routine, must wrap each
conflict point in order to protect the isolation in-
variant of the instances. In order for this methodol-
ogy to work, each conflict point must be identified
and neutralised. Clearly, as the kernel changes and
new conflict points are added, each must be indi-
vidually addressed.

The kauth(9) system enforces a similar logic.
When kernel execution reaches a fixed arbitration
point, zero or more listeners are notified with a
variable-sized tuple minimally containing the the
caller’s credential and the requested operation (ad-
ditional scope-specific data may also be passed
to the listener). Thus, a signal from a ∈ A
to b ∈ B may be intercepted with operation
KAUTH PROCESS CANSIGNAL, and the listener may
appropriately allow or deny based on the involved
credentials.

The Jail system, regarding resource isolation, has
a considerable edge over kauth(9): the kauth(9)
framework does not provide any sort of internal
identification of contexts. A practical example fol-
lows: if one wishes to provide multiple Unix envi-
ronments, there’s no way to differentiate between
multiple “root” users. kauth(9) listeners receive
only notice of user and group credentials, and has
no logic to pool credentials into a authentication
group. This considerably limits the effectiveness of
the subsystem; however, it’s not an insurmountable
challenge to modify the implementation to recog-
nise context, although instance process trees would
not be rootable under init(8).

Although FreeBSD Jail does have an in-kernel par-
tition of resources, the implementation falls short of
full partitioning. Each credential, if jailed, is asso-
ciated with a struct prison with a unique identi-
fier. When a request arrives to the kernel on behalf
of an imprisoned process, the task credentials have
the standard Unix credentials and also an associ-
ated prison identifier. This allows conflicting user
identifiers to be collected into prisons.

Our issue with both systems is the strategy by
which isolation is enforced: functional isolation,
where every point of conflict must be individually
resolved. This is flawed security model, where in
order to guarantee isolation, one must demonstrate
the integrity of every single conflict point. Since
some conflict points are indirect, this is often very
tricky, or outright impossible. A cursory investi-
gation of the sysctl(3) interface reveals that the
hostid of the host system may be set by guests. Al-
though this may be deliberate, the onus is on the
developer to ensure that all conflicts are resolved;
or if they are not, to provide an explanation.

6 Proposal

We consider an alternative approach to isolation
that provides a priori isolation of kernel resources:
logical isolation. Instead, for example, of cross-
checking the credentials of process a ∈ A signalling
b ∈ B, we guarantee A ∩ B = Ø by collecting re-
source pools into the resource context structures
themselves. In other words, the system resources
themselves are collected within contexts, instead

74



of requiring functional arbitration. Although this
strategy is considerably more complicated to ini-
tially develop, the onus of meticulous entry-point
checking is lifted from the kernel.

First, our method calls for a means of context iden-
tification. Like with Jail, we associate each creden-
tial with a context; in this document, we refer to
this structure as the instance structure. Instance
structures have one allocation per context and are
maintained by reference counters.

In order to isolate at the broadest level, we comb
through the kernel to find global structures. These
we must either keep global or collect into the in-
stance framework. Some resources, like the host-
name and domainname, are trivial to collect. Oth-
ers, like process tables, are considerably more diffi-
cult. Still others, like network stack entities (rout-
ing tables, etc.) are even more difficult. How-
ever, once these have been appropriately collected,
we’re guaranteed isolation without requiring com-
plex border checks.

Further, we propose a forest of instance trees: in-
stances may either be rooted at init(8) to create
simultaneous, isolated system instances, or instead
branch from existing instances, effectively creating
a host/guest scenario. Child instances introduce
some complexity; however, instead of building a
selective non-injection into our original isolation
model (as in FreeBSD Jail), we manage child in-
stances through a management interface, instead of
the violating our logical model. In practical terms,
instead of issuing kill(1) to a child instance’s pro-
cess, a parent must operate through a management
tool (described in “Implementation”) with default
authority over child operation.

Since the topic of hard resources (devices) is or-
thogonal to isolation as per our described scenario,
we relegate this topic to the “Future Work” sec-
tion of this document. The same applies for the
proposed management interface.

7 Implementation

We focus our implementation on NetBSD 3.1. Our
choice for this basis system was one of cleanli-
ness, simplicity, and speed. FreeBSD proved to

be too complex and already encumbered by the
existing prison mechanism. OpenBSD, while sim-
ple and very well documented, can’t compete with
NetBSD (or FreeBSD) in terms of speed. NetBSD
has proved to have very well-documented with con-
cise code. The speed of the system is acceptable
and the number of available drivers is adequate.
Our choice of basis kernel is still open to change;
the alterations, although extensive, are relatively
portable among similar systems. From NetBSD
we inherit a considerable set of supported architec-
tures. Since this proposal doesn’t affect the kernel’s
bottom-half, our project inherits this functionality.

The existing implementation, which is freely down-
loadable and inherits the license of its parent,
NetBSD, carries the unofficial name “mult”. The
remainder of this document focusses on the design,
implementation, and future work of the “mult” sys-
tem.

7.1 Structure

The system is currently implemented by collect-
ing resources into struct inst structures, which
represent instances (similar to struct prison in
FreeBSD’s jail). Each instance has a single struct
inst object. There are two member classifica-
tions to the instance structure: public and private.
Public members are scoped to the instance struc-
ture itself; private members are anonymous pointer
templates scoped to the implementing source file.
What follows an abbreviated view of this top-most
structure:

struct inst {
uint i_uuid;
uint i_refcnt;
struct simplelock i_lock;
int i_state;
LIST_ENTRY(inst) i_list;

char i_host[MAXHOSTNAMELEN];
char i_domain[MAXHOSTNAMELEN];

inst_acct_t i_acct;
inst_proc_t i_proc;
...

};

In this listing, i host and i domain are public
members: their contents may be manipulated at
any scope. The i acct and i proc members are
private; their types are defined as follows:

75



typedef struct inst_acct *inst_acct_t;
typedef struct inst_proc *inst_proc_t;

The definitions for inst acct and inst proc are
locally scoped to source files kern acct.c and
kern proc.c, respectively. The inst proc struc-
ture is locally scoped with the following members:

struct inst_proc {
uint pid_alloc_lim;
uint pid_alloc_cnt;
struct pid_table *pid_table;
...

};

This structure consists of elements once with global
static scope to the respective source file. The
following is an excerpt from the pre-appropriated
members in the stock NetBSD 3.1 kern proc.c
source file:

static struct pid_table *pid_table;
static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
static uint pid_alloc_lim;
static uint pid_alloc_cnt;

Other private members share similar structure. De-
ciding which non-static members to make private,
versus instance-public, is largely one of impact on
dependent callers throughout the kernel.

At this time, there are a considerable number of
appropriated subsystems with one or both public
and private members: processes, accounting, pipes,
kevents, ktraces, System V interprocess communi-
cation, exit/exec hooks, and several other minor
systems. The procfs pseudo-file-system has been
fully appropriated with significant work on ptyfs
as well. Subsystems are generally brought into in-
stances on-demand, that is, when larger, more sig-
nificant systems must be appropriated.

7.2 Globals

There also exists a global instance context for rou-
tines called from outside a specific calling scope, for
example, scheduling routines called by the system
clock. These may need to iterate over all instances.
The global list of instances may be accessed from a
single list structure allinst, much like the previ-
ous allproc for process scheduling. Instances may

also be queried by identifier, which is assumed to
be unique. This convention is under reconsider-
ation for the sake of scalability and the possibil-
ity of conflicting identifiers with high-speed cycling
through the namespace of available identifiers.

7.3 Locking

Locking is done differently for different services.
Private members often have their own native lock-
ing scheme inherited from the original implementa-
tion. Some public members also inherit the original
locking, most notably the process subsystem, which
has several public members as well as a private
definition. General locking to instance members,
those without a subsystem-defined locking mecha-
nism, occurs with the i lock member of struct
inst. The global instance list has it’s own lock,
appropriate for an interrupt context.

7.4 Life-cycle

Instances are created in a special version of
fork1(9) called forkinst1(9), which spawns an
instance’s basis process from the memory of proc0.
At this time, the instance structure itself is created.
The private members are passed to an appropriate
allocation routine defined for each member; usually,
the memory referenced by these pointers is dynam-
ically allocated.

The life-time of an instance is defined by its refer-
ence count, i refcnt in struct inst. When this
value reaches zero, the instance is cleaned up, with
each private member being passed to a correspond-
ing release routing, and returned to the instance
memory pool. These allocation and deallocation
routines are similar for each instance:

int
inst_proc_alloc(inst_proc_t *, int);

void
inst_proc_free(struct inst *);

The release of an instance’s final process (usually
the instinit(8) or init(8) process) must be spe-
cially handled. In normal systems, processes must
have their resources reclaimed by the parent or

76



init(8) under the assumption that init(8) never
exits (or the system usually panics). This case is
no longer true in our system, thus, a special ker-
nel thread, instdaemon(9), frees the resources of
these special processes. Since kernel threads tradi-
tionally reparent under the init(8) process, and
this process is no longer singular, kernel threads
also are reclaimed by instdaemoe(9).

7.5 Administration

There are several tools available with which one
may interact and administer the instance frame-
work. These interact with the kernel through ei-
ther the sysctl(3) interface or a new system call,
instctl(2). The former is primarily to access in-
formation on the instance framework, while the lat-
ter manipulates it. The instctl(2) function oper-
ates on a single argument, which contains parame-
ters for controlling the instance infrastructure:

int
instctl(const struct instctl *);

The struct instctl structure allows several
modes of control: debugging information, starting
instances, and stopping instances. We anticipate
this structure to grow significantly to account for
other means of control.

There are several implementations of these func-
tions. The instinfo(8) utility lists informa-
tion about instances and the instance framework,
instps(1) is an instance-aware version of ps(1),
and instctl(8) which directly interacts with the
instctl(2) system call.

An alternate init(8) implementation,
instinit(8), is currently used for non-default
instances. This is a temporary measure while the
semantics behind terminal sharing are formalised.
The instinit(8) process acts like init(8)
except that it doesn’t start the multi-user virtual
terminal system. It’s a required process for all
starting instances, i.e., it must exist within the
root file-system in order for the instance to “boot”.

The system for administering instances is still un-
der consideration, and may change. At this time,
we chose simplicity, in this regard, over elegance

and scalability; our focus is on the system’s sta-
bility and design continuity. Administration is a
topic that we wish to re-consider when a signifi-
cant degree of scalability has been achieved, and
the administration of thousands of instances be-
comes necessary.

8 Future Work

The “mult” system has a fairly well-defined short-
term future, with some interesting possibilities for
long-term development.

In the short-term, we anticipate fully appropriat-
ing pseudo-devices into instances. Furthermore,
we envision a system for delegating physical de-
vices to instances in a clean, elegant manner. Al-
though not strictly-speaking a short- or mid-term
goal, optional mid-term work, once the framework
interfaces has been finalised, is to optimise the boot
and shutdown sequence of instances. Lastly, inter-
instance communication and manipulation should
also be added to the control framework divvying
physical resources between instances.

Pseudo-devices require fairly significant considera-
tion. The most important is the network, followed
closely by the terminal. We intend on following
a similar path as the cloneable network stack for
FreeBSD[4], where the entire network stack infras-
tructure is fully brought into instances. Bridges
will allow instances to claim an entire network de-
vice, whose data may be routed to another instance
controlling the physical network interface.

Terminals may be appropriated by dividing be-
tween terminal instances and non-terminal in-
stances, where the former is connected to a real
terminal and the latter runs “head-less”. At this
point, all instances run head-less, i.e., they have
no controlling terminal during boot. This neces-
sitated re-writing init(8) as instinit(8) to skip
multi-user virtual terminal configuration. Each ter-
minal instance would connect to one or more vir-
tual terminals. Obviously, since virtual terminals
are a scarce resource, this will rarely be the case;
however, connecting instances to terminals allows
multiple sets of monitor, keyboard and mouse con-
necting to the same computer and interacting with

77



different instances.

There are a significant number of potential opti-
misations to the instance infrastructure. It’s ab-
solutely necessary that the scheduler and memory
manager account for instance limits, allowing ad-
ministrators to make real-time adjustments to the
scheduling priority of individual instances. The
Linux VServer uses a two-tiered scheduler for its
instance implementation (which uses functional iso-
lation): we envision a similar scenario but with an
emphasis on real-time scheduling. Furthermore, we
plan on introducing a per-subsystem configuration
structure. At this time, each subsystem (processes,
pipes, and so forth) is configured with the system
defaults. By allowing these defaults to be changed,
or disabled entirely, instances may be customised
to their run-time environments.

With a completed isolation environment, we can
begin to consider extending our model to support
hardware. At this time, our model depends on an
administrator to appropriately partition resources
for each instance, much like with FreeBSD Jail.
We envision extending isolation to the device level;
instead of changing device drivers themselves, we
consider an additional layer of logic at shared ar-
eas of abstraction code. Our approach is divided
into two phases. First, we must have a means of
reliably identifying devices; second, we must have
a means to intercept data flow to and from these
devices. Lastly, we must correlate device identity,
operation, and credentials to arbitrate access.

We plan on drawing from the Linux kernel’s udev[2]
strategy to map devices to identifiers. Since the ad-
ministrator will be creating the access module rules,
there must be a means to flexibly label devices as
they’re recognised by the system. This strategy
will involve our considerations of device pseudo-file-
systems, which must be coherent with the notion of
instances. This will govern the exposure of devices
to instances, and considerably narrow the window
of exposure.

Second, we must define arbitration points. These
will most likely occur when requests are brokered
to individual drivers. We plan on drawing on
scope parameters from kauth(9) to find a gener-
alised granularity. Realistically, most device isola-
tion may be solved by an intelligent dev file-system.

Both of these concepts, the device file-system and
arbitration, must work together with the notion of
instances. We propose an access module that arbi-
trates requests for hard resources, and limited in-
teraction between other instance contexts. Since
hard resources may not be logically isolated as may
soft resources (as there’s no natural correlation be-
tween a hard resource and a particular instance),
the onus falls on the administrator to properly map
instances onto devices.

9 Conclusion

In this document, we introduced the theory of iso-
lation and discussed various existing strategies. Af-
ter considering the limitations of these strategies,
we proposed a new one. Our new strategy is not
without its caveats: since the necessary altercations
span the kernel diapason, keeping these sources
synchronised with the origin kernel is a difficult
task. However, since our changes primarily affect
the kernel top-half, we believe that our sacrifice is
warranted; we can still inherit additional drivers
and sub-system changes from the main-line.

10 Acknowledgements

We’d like to thank the University of Latvia’s Insti-
tute of Mathematics and Computer Science, where
the system began development. Special thanks to
the BSD.lv Project for its initial funding of the
work, and a special thanks to Maikls Deksters for
his support and contributions. Lastly, thanks to
the Swedish Royal Institute of Technology’s Centre
for Parallel Computing for their continued support
of this project.

References

[1] EuroBSDCon. NetBSD Security Enhanceme-
nents, 2006.

[2] Greg Kroah-Hartman. udev: A userspace im-
plementation of devfs. In Proceedings of the
Linux Symposium, July 2003.

78



[3] SANE 2nd International Conference. Jail: Con-
fining the Omnipotent Root, 2000.

[4] Marco Zec. Implementing a clonable network
stack in the freebsd kernel. In USENIX Annual
Technical Conference, FREENIX Track, 2003.

79


