
Reducing Lock Contention in a Multi-core system

by: Randall Stewart

Why do we lock?

With the advent of today's multi-core CPU's more

and more operating systems are moving to an

Symmetric Multi-Processor (SMP) environment!

Each operating system must thus find ways to

ensure sane and coherent operation when multiple

CPU's access the same data structures

simultaneously.

One of the most common coherency mechanisms

is the mutex.

115

Mutex's provide a simple gate that allows one CPU

to access a data structure while another waits its

turn.

In user land pthead_mutex's are available for this

purpose, but not so in the kernel.

In the FreeBSD kernel we have the “mtx”

structure.

Like pthread_mutex's these structures, once

initialized, can be locked and unlocked for

exclusive access to a data structure.

How do we lock in the FreeBSD

kernel?

An example used by the SCTP stack

in FreeBSD and MAC OS/X.

In the SCTP implementation we have quite

effectively used locking to allow a sender of data

(the socket api user) and the transmitter of data (the

interface interrupt task) to share a data structure via

a mutex.

Socket Sender

Interrupt Task
Send mtx.

116

With a simple scheme

With this simple scheme we solve the locking

problem and our two or more CPU's do not have a

problem.

However we gain one down-side, lock-contention.

Lock contention is how often one thread holds the

lock while the other has it.

The less lock contention, the more parallel our

process will be and thus we will better utilize the

multi-core systems we have available.

So how can we measure lock

contention?

FreeBSD comes with a kernel level tool-kit for this

very purpose.

If we build our kernel with the

“LOCK_PROFILING” option we can measure our

lock contention. (man LOCK_PROFILING)

Our config file looks like:

....

options LOCK_PROFILING

...

Build the kernel in the usual way and reboot

117

Getting a “lock profile” run

Lock profiling on your new kernel is NOT enabled

by default.

You can turn on/off/examine lock profiling by:

sysctl -a | grep lock | grep prof | grep debug

debug.lock.prof.stats: No locking recorded

debug.lock.prof.collisions: 0

debug.lock.prof.hashsize: 4096

debug.lock.prof.rejected: 0

debug.lock.prof.maxrecords: 4096

debug.lock.prof.records: 0

debug.lock.prof.acquisitions: 0

debug.lock.prof.enable: 0

Getting a “lock profile” run

Change the enable flag to 1.

sysctl -w “debug.lock.prof.enable=1”

Now run any tests that you want to profile.

After you are done change the sysctl back to '0'

Now do a sysctl -a > my_file.txt

Vi/emacs your file and scan down until you find the

symbol debug.lock.stats

You should see a header/numbers that look like
max total wait_total avg wait_avg cnt_hold cnt_lock name

And lots of numbers.

118

Max – the max time this point waited in microseconds.

Total – the total hold time in microseconds.

Wait_total – the total accumulated wait time.

Count – the number of times this lock was at this point **

Avg – The average hold time in microseconds.

Wait_Avg – the average wait time in microseconds.

Cnt_hold – The number of times this lock was held when

someone else wanted it. **

Cnt_lock = The number of times someone else held the lock at

this point **

Lock name – the lock name and file and line number.**

Mutex Profiling results

Count Count hold Count lock Lock Name
sctp_output.c:5140
sctp_output.c:6454
sctp_output.c:11088
sctp_output.c:11170
sctp_output.c:11375

0
551
52
5631
4

0
5571
11
503
5

12
12240
12240
59394
12240

Socket sender
Interrupt transmitter

An Example
Socket Sender

Interrupt Task
Send mtx.

119

An Example

Count Count hold Count lock Lock Name
sctp_output.c:5140
sctp_output.c:6454
sctp_output.c:11088
sctp_output.c:11170
sctp_output.c:11375

0
551
52
5631
4

0
5571
11
503
5

12
12240
12240
59394
12240

45.5% of the time its held here
4.5% of the time someone wants the lock when held

An Example

Count Count hold Count lock Lock Name
sctp_output.c:5140
sctp_output.c:6454
sctp_output.c:11088
sctp_output.c:11170
sctp_output.c:11375

0
551
52
5631
4

0
5571
11
503
5

12
12240
12240
59394
12240

0.8% of the time its held here
9.4% of the time someone wants the lock when held

120

So how can we reduce contention

and preserve sanity?

Socket Sender

Interrupt Task
Send mtx.

struct name {
struct type *tqh_first; /* first element */
struct type **tqh_last; /* addr of last next element */

};

Is really

Where
struct name {

struct type *tqh_first; /* first element */
struct type **tqh_last; /* addr of last next element */

};

The socket sender always appends to the tail

The interrupt transmitter always pulls from the head

and may not always pull the whole message off

(considering that a msg can be larger than the

PMTU).

So can we reduce locking?

121

We can observer about the sender
struct name {

struct type *tqh_first; /* first element */
struct type **tqh_last; /* addr of last next element */

};

The sender never knows if the transmitter is active

and is never sure if the list is empty or has entry's on

it (tqh_last points to the head when empty).

When adding data, we only use tqh_last.

But without foreknowledge the socket sender MUST

always lock the structure.

We can observer about the

transmitter
struct name {

struct type *tqh_first;
struct type **tqh_last;

};

But what about the transmitter?

It does know:
If it is going to pull the entry off.

It can tell if there is already a next entry on the queue.

EntryEntry Entry NULL

122

We can observer about the

transmitter when Pulling an entry.
So from this knowledge could we:

Only lock if we will pull the entry from the queue?

Don't lock if there is a next item in the queue (since the

other thread is inserting there)?

EntryEntry Entry NULL

Entry NULL

No Lock

Must Lock

So what about contention on the

same entry, when more data is

added?

The data being added by the socket sender is a chain

of mbufs.

NULLEntry

struct sctp_stream_queue_pending {
struct mbuf *data;
struct mbuf *tail_mbuf;
struct timeval ts;
struct sctp_nets *net;
TAILQ_ENTRY (sctp_stream_queue_pending) next;
uint32_t length;

123

So what about contention on the

same entry, when more is added?

If we always update the size last, after appending, then the transmitter

will always see either the correct size, or a reduced size.

Since we use mcopym() with the size, this limits us so when

contending for one being added the most that can happen is we will

take less than we could have.

Note that we use atomic_add_int() to assure a barrier and that the

compiler does not give us a surprise.

struct sctp_stream_queue_pending {
struct mbuf *data;
struct mbuf *tail_mbuf;
struct timeval ts;
struct sctp_nets *net;
TAILQ_ENTRY (sctp_stream_queue_pending) next;
uint32_t length;

So what two things is the transmitter

doing?

When it goes to add data, don't get a lock unless the

size of the copy will exhaust the mbuf completely.

This allows continued addition to a message without

the transmitter locking.

When the transmitter decides to remove an entry it

will only lock if the “next” pointer is NULL.

124

Results after our modification

Count Count hold Count lock Lock Name
sctp_output.c:5141
sctp_output.c:6517
sctp_output.c:11151
sctp_output.c:11437

4
16
232
0

64
157
19
1

288
344
33549
45787

Note that the redesigned algorithms have one less lock.
Socket sender
Interrupt transmitter

The results show

A huge drop in the percentage that the socket sender

contends with the transmitter from 45% to .02%

Very rarely does the transmitter even get a lock, its

still a high percentage of contention but with a drop

from 12,252 lock requests to 632.

125

Conclusion

When adding a shared resource to a SMP O/S one

needs to:
Carefully consider your data structures that the various

locks protect.

Examine the level of lock contention.

Try to craft mechanisms that allow one of the

threads/cpus to NOT lock when possible.

No two problems are the same but the base concept

presented here can be applied to both kernel and user

level code.

Other things that can be done in

Kernel land (use with caution)

When wanting to cache resources for quick re-use

per CPU lists can be created.

One can use the critical_enter/critical_exit call to

prevent being scheduled.

The code would look something like:

free_item(entry_t *item) {

critical_enter();

cpu = curcpu;

LIST_INSERT_HEAD(&cache[cpu].list,

item, next);

critical_exit(); }
126

