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ABSTRACT

A file system is a protocol translator: it interprets incoming requests and transforms
them into a form suitable to store and retrieve data. In other words, a file system has the
knowledge of how to convert abstract requests to concrete ones. The differences between
how this request translation is handled for local and distributed file systems are multiple,
yet both must present the same semantics to a user.

This paper discusses implementing distributed file system drivers as virtual file system
clients in userspace using the Pass-to-Userspace Framework File System, puffs. The
details of distributed file systems when compared to local file systems are identified, and
implementation strategies for them are outlined along with discussion on where and how
to optimize for maximal performance.

The design and implementation of an abstract framework for implementing distributed
file systems on top of puffs is presented. Tw o distributed file system implementations are
presented and evaluated: psshfs, which uses the ssh sftp protocol, and 9puffs, which uses
the Plan9 9P resource sharing protocol. Additionally, the 4.4BSD portal file system and
puffs user-kernel communication are implemented on top of the framework. The perfor-
mance of userspace distributed file systems are evaluated against the in-kernel NFS client
and they are measured to outperform NFS in some situations.

Keywords: distributed file systems, userspace file systems, software architecture

1. Introduction

One taxonomy for file systems is based on
where they serve data from:

• Fictional file systems serve a file system
namespace and file data which is generated by
the file server. Examples are procfs and devfs.

• Local file systems serve data which is located
on the local machine on various types of
media. Examples are FFS, cdfs and tmpfs for
hard drive, CD and memory storage, respec-
tively.

• Distributed file systems serve non-local data,
typically accessed over a network. Examples
are NFS [1] and CIFS [2].

A typical distributed file system will serve
its data off of a local file system, but it is also free
to serve it from a fictional file system, its own
database or even another distributed file system.

Distributed file systems can be subdivided
into two categories. In client-server type file sys-
tems all served data is retained on dedicated
servers. The examples NFS and CIFS given ear-
lier are examples of this kind of a file system.
Peer-to-peer file systems treat all participants
equally and all clients may also serve the file sys-
tem’s contents. Examples of peer-to-peer file sys-
tems are ivy [3] and pastis [4]. We concentrate on
client-server systems, although all discussion is
believed to apply to peer-to-peer systems as well.
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Figure 1:
Structural comparison of userspace and kernel distributed file system drivers
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Core operating system services such as file
systems are historically implemented in the kernel
for performance reasons. With ever-growing
machine power, more and more services are being
pushed out of the kernel into separate execution
domains. This provides both improved reliability
and an easier programming environment. The
idea of abandoning a monolithic kernel itself is
not new and has been around in systems research
for a long time with operating systems such as
Mach [5]. The idea has, however, recently gained
interest especially in file systems because of the
FUSE [6] userspace file system framework.

It is, however, incorrect to assume that a
userspace file system implementation will solve
all problems by itself. In fact, it is nothing more
than pushing the problems of implementing a file
system from one domain to another.

This paper explores implementing distrib-
uted file systems in userspace on NetBSD [7].
While details are about NetBSD, the ideas are
believed to hav e wider usability. The attachment
for file systems is provided by puffs [8]. The file
systems interface already exported to userspace is
not replaced for distributed file systems [9], but
rather extended by building a framework upon it.

The following contributions are made:

• Explaining file system concepts relevant to
implementing distributed file systems in
userspace.

• Presenting the design and implementation of a
framework for creating distributed file systems
in userspace.

Tw o file systems have been implemented:

• psshfs: a version of the ssh file system written
specifically to use the features of puffs to its
maximum. As its backend, psshfs uses the ssh
sftp [10] sub-protocol.

• 9puffs: a file system client implementing the
Plan9 9P [11] resource sharing protocol.

Unforeseen uses include:

• portalfs: the 4.4BSD portal file system

• puffs: by treating puffs itself as a peer-to-peer
file system, the framework can be applied for
transmitting requests from and to the kernel.

The remainder of this paper is organized as
follows. Chapter 2 giv es a very short overview of
the concepts of puffs relevant to this paper. Chap-
ter 3 presents an overview of what a file system is
and points out key differences between local and
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distributed file systems from an implementor’s
point of view. Chapter 4 presents a framework for
implementing distributed file systems. Chapter 5
contains experimental results for the implementa-
tions presented in this paper. Chapter 6 provides
conclusions and outlines future work.

2. Short Introduction to puffs

This section provides readers unfamiliar
with puffs the necessary overview to be able to
follow the paper. A more complete description of
puffs can be found elsewhere [8,12].

puffs is a framework for building file sys-
tem drivers in userspace. It provides an interface
similar to the kernel virtual file system interface,
VFS [13], to a user process. puffs attaches itself
to the kernel VFS layer. It passes requests it
receives from the VFS interface in the kernel to
userspace, waits for a result and provides the VFS
caller with the result. Applications and the rest of
the kernel outside of the VFS module cannot dis-
tinguish a file system implemented on top of
puffs from a file system implemented purely in the
kernel. Addtionally, the kernel part of puffs
implements the necessary safeguards to make sure
a malfunctioning or mischievous userspace com-
ponent cannot affect the kernel adversely.

For the implementation of the file system in
userspace a library, libpuffs, is provided. libpuffs
not only supplies a programming interface to
implement the file system on, but also includes
convenience routines commonly required for
implementing file systems. An example of such
convenience functionality is the distributed file
system framework described in this paper.

A file system driver registers a number of
callbacks with libpuffs and requests the kernel to
mount the file system. The operation of a file sys-
tem driver is driven by its event loop, in which the
file system receives requests, processes them and
sends back a response. Typically, a file system
driver will want to hand control over to
puffs_mainloop() after initialization and
have it take care of operation. For example, the
file system drivers described in this paper hand
control over to the mainloop. Nevertheless, it is
possible for the file system also to retain control
with itself if it so desires and dispatch incoming
requests using routines provided by libpuffs.

Since distributed file system operations
cannot usually be completed without waiting for a
response from a server, it is beneficial to be able
to have multiple outstanding operations. In most

Figure 2:
Multiple Levels of Client and Server
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programs this is accomplished by threads or an
ev ent loop with explicitly stored state. puffs takes
a different route: it provides cooperative multi-
tasking as part of the framework and allows file
system builders to schedule execution when
needed. This, as opposed to using threads, means
that the file system driver is nev er scheduled
unexpectedly from its own point of view. Each
execution context has its own stack and machine
context, so yielding and continuing can be done
with minimal programming involvement and
without explicitly storing register and stack state.

Every file system callback dispatched by
the library has an associated execution context
cookie, puffs_cc. This is used to yield execution
by calling puffs_cc_yield(). Execution is
resumed by calling puffs_cc_continue() on
the same context cookie. The cookie may be
passed around like any variable. It is invalidated
once the request has been handled.

3. Structure of a Distributed File System

Distributed file system architecture along
with this paper’s terminology is presented in Fig-
ure 2. The term file server is used to describe the
entity servicing the file system namespace and file
contents using the file system protocol. The file
system driver translates requests from the kernel
virtual file system to the file server.
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Distributed file systems operating over the
network send out queries to the server to satisfy
requests. Queries include an identification tag,
which is used to pair responses from the server to
issued requests. Of the file system protocols dis-
cussed in this paper, the Remote Procedure Call
[14] mechanism used by NFS contains a transac-
tion identifier, XID, ssh sftp [10] uses a 32bit
request identifier and 9P [11] uses a 16bit tag.

The format of a message inside query
frames is dependent on the file system protocol.
However, at least the following operations, in
some form or another, are common:

• open files to create file handles (and close file
handles)

• read and write given file handle

• read the entries in a directory

• get and set the attributes of a file

• create and remove files, directories and special
files

The discussion in the rest of this chapter
applies to both the 9P and sftp protocols, although
some of the mentioned features have been so far
implemented only for psshfs. 4.4BSD NFS
[15,16] is used for comparison in select places.

3.1. Network vs. Local Media

File system protocols commonly use TCP1

for transport. A TCP connection is effectively a
FIFO queue with latency and bandwidth charac-
teristics. Once data is placed into the network
socket, it will be transmitted in-order. This means
that on a slow link with a large amount of data
already in the buffer, it can take sev eral seconds
before anything inserted into the buffer will reach
the peer. To take a concrete example, consider
one thread doing a bulk read of a file and another
thread doing ls. If sev eral hundreds of kilobytes
of incoming data has been requested and already
queued into the socket by the server, it will take
several seconds for the response to the directory
read to reach the requesting end. Additionally,
since reading a directory typically requires an
EOF confirmation, it will take a minimum of two
of these several second round trips. It is impor-
tant to notice that after we send a request which
causes the server to queue up large amounts of
data, we cannot "unrequest" it any longer even
though we might need the bandwidth for

1 NFS is transport-independent and has support
for e.g. UDP transport, but as that is not applicable
for remote sites, it is not discussed here.

something more urgent in interactive use.

A local file system’s media access is not as
limited. Requests are queried and can be
answered out-of-order depending on how the mul-
tiple layers from the disk scheduler to the driver
and device itself see best. While large bulk trans-
fers will slow down smaller requests such as a
directory read, they will not necessarily com-
pletely stall them.

There are two approaches to dealing with
this in distributed file systems:

Request throttling: do not allow one thread to
issue requests saturating the pipe for several sec-
onds. This is notable especially when the virtual
memory system does read-ahead requests for
large amounts of data. Since the purpose of read-
ahead is make sure data is already locally cached
when an application demands it, disabling read-
ahead would cause application request latency.
Ideally, the amount of read-ahead should be based
on latency, available bandwidth and the total num-
ber of outstanding requests in the file system
driver. As the heuristics to optimize this get com-
plex fast, a much more pragmatic approach was
taken: a command line option to limit the number
of read-ahead requests per node. While far from
perfect, this takes care of massive bursts and miti-
gates the problem for the most part.

Tw o separate channels: one for bulk data and
one for metadata. Even though both connections
share the same bandwidth, they will operate in
parallel, and bulk transfers will not completely
stall other requests. However, opening two TCP
connections brings additional complications.
First, we must authenticate twice. Second, all
operations which create state must be duplicated
for both channels, e.g. we must walk the file hier-
archy for both connections with 9P. While in the-
ory this option will provide better benefit, due to
these complexities, it was not implemented � it is
better to wait for the adaption SCTP [17] to solve
the difficulties of multistreaming for us.

3.2. Distributed vs. Local File Systems

Some virtual file system operations are
biased to the file system driver having direct
access to the storage medium. This is not an issue
for local file systems and also for distributed file
systems specifically designed to inter-operate well
with the virtual file system layer (e.g. NFS).
However, all file system protocols (e.g. sftp) do
not support the necessary functionality and must
resort to alternative methods.
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This section discusses differences between
distributed and local file systems and points out
what is important to keep in mind when imple-
menting a distributed file system driver in
userspace. It also includes tips on increasing the
performance of distributed file systems.

Permissions

Access control is not done in operations
themselves, but rather using the access method.
This presents problems for distributed file systems
in several places: the typical I/O system calls
(read, etc.) are not expected to return EACCES.

Some file system protocols do not present
an opportunity to make access checks without
making calls themselves. For example, with sftp
we have no definitive idea in the file system driver
of how our credentials map at the other end and
therefore cannot do access checks purely by look-
ing at the permission bits. The options are either
to ignore the proper access method all together or
execute shadow operations to check for access.

Luckily, in most of the cases applications
deal well with returning EACCES from an I/O
call, especially read/write. Howev er, readdir is
an exception and without implementing the
access method properly, applications will only see
an empty directory without any error message
ev en if readdir returns an error. This is because
readdir() is implemented in the system library
and ignores permission errors from the get-
dents() system call. However, most file system
protocols allow and require a directory to be
opened for reading before fetching the contents.
If the file system driver returns a permission error
already when opening the directory for reading,
the error is displayed properly in userspace.

Lookup

Lookup is the operation by which a file sys-
tem converts a pathname component into an in-
memory data structure to be used in future refer-
ences to that file. This means that the file system
should create an internal node for the file if found.
In addition to a structural pointer, puffs requires
three other pieces of information on the file:

• file type (regular file, directory, ...)

• file size (if a regular file)

• device number (if a device)

Typically the best strategy for implement-
ing lookup in distributed file systems is doing
readdir for the directory the lookup is done from

and scanning the results locally.

Permissions also present an extra step for
lookup. Lookup should return success for an
entry which is inside an unreadable directory. To
circumvent this, lookup can first attempt to read
the directory, and if that fails, issue the equivalent
of the protocol’s getattr operation to check if the
node exists.

It is possible to implement the lookup oper-
ation directly as a getattr operation, but it must be
kept in mind that this will introduce an n*latency
network penalty for looking up all the compo-
nents in a directory, while doing a directory entry
read once, caching the results and just scanning
the locally cached copy introduces a much
smaller cost.

While some file system protocols provide
attributes for the files directly in the readdir
return response, others might require extra effort
such as real getattr operation. Next we discuss
some optimizations possible in those cases.

The Unix long ls listing, ls -l is a fairly
typical operation, which lists directory contents
along with their attributes. Unless done right, this
operation will also reduce performance down to
n*latency because of waits for the getattr opera-
tions to complete and essentially doing nothing
meanwhile.

While both 9P and sftp already supply
attribute information as part of the readdir opera-
tion, an experimental version of psshfs was done
to simulate a situation where it does not. This
involved opportunistically firing off getattr
queries for each of the directory entries found
already during readdir and using cached values
when getattr was issued to the file system driver.
Tw o issues affecting performance were discov-
ered and are listed here as potential pitfalls.

1. readdir operations generally require at least
two round-trips for any file system protocol:
one to deliver the results and a second one to
deliver EOF. If getattr queries are queued or
sent before parts 2-n of the readdir operation,
the getattr requests are processed before the
readdir operation completes. The file system
driver will be waiting for the file server to
process a lot of getattr operations to which the
results are not needed yet. Therefore, the
getattr operations should be fired off only after
the readdir operation is completely done.

2. The attributes of the first file in the directory
are requested from the file system driver after
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readdir finishes; almost always before the
results for the opportunistic getattr arrives
from the file system server. If the file system
driver discovers there is no cached result wait-
ing and just fires off another query without
checking if there is an outstanding request that
should be waited for, all of the getattr requests
targeted at later directory entries will be pro-
cessed before the one we are currently after.
Therefore, if an outstanding request is already
active, it should be waited for instead of firing
a new one.

Inactive

The inactive method for a file system node
is called every time the kernel releases its last ref-
erence to a node. The purpose of inactive is to
inform the file system that the node is no longer
referenced by anything in the kernel and the file
system may now free resources associated with
the node. As, for example, executing the common
command ls -l will issue an inactive for most
of the files in the directory (all the ones without
other references), inactive is an extremely com-
mon operation. However, typically a file system
requires a call to inactive only in special cases,
such as when a file is removed from the file sys-
tem. Calling the inactive method in the kernel
just costs a pointer indirection through the VFS
layer and a function call, so it is cheap. When
calling a userspace method the cost is much
higher and should be avoided if possible.

The currently implemented solution to the
cost problem is giving a file system the option for
inactive to be called only when specifically
requested. This is done with a setback operation.
When the file system driver discovers the opera-
tion it is currently performing requires inactive to
be called eventually, it issues an inactive setback.
The means that a flag is piggy-backed on the
request response to the kernel and set for the node
structure in the kernel. In addition to incurring
next to zero cost, the setback also solves problems
with locking the kernel node � deadlocks could
occur if we simply added a kernel call to flag this
condition as we would be making it from the con-
text of the file system driver. In case the inactive
flag is not set for a node when the inactive kernel
method is called, the request is simply short-cir-
cuited within the kernel and not transported to the
userspace file system driver. For example, the
open method may request inactive to be called for
reasons explained in the next section.

Open Files and Stateful File Handles

Local file systems operate on local mass
media and access file contents by directly access-
ing the media. Actual read and write operations,
including their memory-mapped counterparts, do
not perform access control. Access control is
done earlier when a file descriptor is associated
with the vnode. This means that as long as the
file descriptor is kept open, the file can be
accessed even though its permissions might
change2. Local file systems do not open any file
system level handles, as they can access the local
disk at any time a request from above mandates
they do so. The same applies to stateless versions
of the NFS protocol.

However, most distributed file systems
behave differently. For example, 9P and sftp
require an explicit protocol level file handle for
reading and writing files. These file handles must
be opened and closed at the right times for the file
system to operate correctly. For instance, assume
that our file system driver opens a file with
read/write access. Now our local system is guar-
anteed to be able to write to the file. Even if some
other client accessing the file system changes the
permissions of the file to read-only, our local sys-
tem is still able to write to the file because of the
open file handle.

Tw o different file handles are required for
each file: one for reading and one for writing. If a
file is opened read/write, it is possible to open
only one handle. However, individual read and
write handles must be opened separately, as the
file’s permissions might not allow both.

Opening handles for reading and writing is
done when file opening is signaled to the file sys-
tem by the open operation. It should be noted that
this operation can be called when the node is
already open. The file server should prefer to
open only one handle if possible. It is possible to
open a node only once for all users due to the cre-
dentials of the file handle being irrelevant; recall,
access should be checked earlier. As some file
servers and file system protocols might limit the
amount of open file handles, the file handles
should be closed once there are no users for the
file on the local system.

On any modern operating system, file con-
tents are accessed in two ways: either with

2 The BSD kernel provides a routine called
re voke(), which can be used to revoke open file han-
dles. However, it is not typically used for regular
files.
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explicit read/write operations or through the vir-
tual memory subsystem using memory mapped
I/O. Regular I/O requires an open file descriptor
associated with the file. However, memory
mapped I/O can be performed without the file
descriptor being open, as long as the mapping
itself was done with the descriptor open. Even if
the file is closed, it is still attached to the virtual
memory subsystem in the kernel and therefore has
a reference. Assuming there are no other refer-
ences, once the virtual memory subsystem
releases the file (due to munmap() or similar),
inactive will be called. Therefore inactive is the
right place to close file handles instead of the
close method.

In the course of this work closing file han-
dles in close was attempted. It included keeping
count of how many times a file was opened in
read-mode and how many times in write-mode.
Also, the mmap method was changed to provide
information about what type of mapping,
read/write/execute, was being done so that the file
system driver could keep track of it. However, the
rules for determining if it was legal to close a file
handle in close proved to be very convoluted. For
instance, a file might have been closed less or
more times than it was opened depending on the
special circumstances. Also, as already noted, the
only way a file system is notified of the virtual
memory subsystem no longer using a file is inac-
tive. The conclusion was to avoid close and pre-
fer inactive unless there is a pressing reason to
attempt to do otherwise.

Caching

Local file systems have exclusive access to
the data on the file server. This means that every
change goes through the file system driver. The
same does not hold for distributed file systems
and the contents can change on the file server
through other file system drivers as well. This
presents challenges in keeping the cache coherent,
i.e. how to make sure we see the same contents as
all other parties accessing the file server.

Currently, the puffs kernel virtual file sys-
tem caches file contents (page cache) and name-
to-vnode lookup information (name cache). The
userspace file system driver, if it chooses to,
caches the rest, such directory contents and file
attributes. While caching in the userspace file
system driver is less efficient, in practice the dif-
ference is minimal: compare the cost of network
access to a peer with the cost of a local query to
userspace. The important point is that caching in

userspace allows a policy decision in the file sys-
tem driver. Based on knowledge of the file sys-
tem protocol, this can be made correct.

Neither sftp nor 9P support leases and
therefore it is not possible to implement fully
coherent caching. However, it is possible to add
one based on timestamps and timeouts. Every
time a file’s attributes or a directory’s contents are
requested by the virtual file system, the current
timestamp is compared against a stored one3. If
the difference is smaller than the timeout value,
the cached data is returned. Otherwise the file
server is consulted and if a mismatch is found, the
kernel virtual file system is requested to invalidate
its cache: page cache for regular files and name
cache for directories.

In addition to being able to specify a time-
out value in seconds, it is also possible to make
the cache always valid and never valid. It is
important to note that an always invalid cache is
not the same thing as no kernel caching at all.
The system’s ability to do memory mapped I/O
and therefore execute files is based on the page
cache. If we completely disable caching for a file
system (mount with the puffs option nocache),
we are no longer able to execute files off of it. By
always invalidating the cache at our checkpoints,
the cache is still frequently invalidated but MMIO
is functional. However, for typical use a timeout
of a few seconds is better even if data is fre-
quently modified from under the file system
driver. Finally, a user-assisted method of invali-
dating caches is provided: sending SIGHUP to the
server invalidates all server and kernel caches.

As was mentioned above, the kernel caches
file contents in the page cache. The page cache
works in two ways: first, file content can be satis-
fied from the cache when read, and second, writes
can be coalesced in memory and written to stable
storage later to avoid lots of small I/O requests.
The second case sometimes poses a problem for
distributed file systems. For example, if copying
a file to the mail server from where it is to be sent
as an attachment, one expects it to be fully trans-
ferred after cp finishes. Instead the file might
still reside completely in the local page cache. To
avoid these kinds of situations, the write through
cache mode for the puffs virtual file system is
used: all writes are flushed immediately after they
are done. Notably though, this does not cause
modifications via memory mapped I/O to be
flushed immediately. This can be solved by

3 NFS checks timestamps also during file read.
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Figure 3:
Lazy Open
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periodically issuing a flush request from the file
system driver, but in practice there have not been
any problems, so this has not been implemented.

Lazy Open

A typical operation sequence to read a file
is lookup, open, read, close. The results for
lookup and read can be cached at least to some
degree as they are idempotent and we can make
(user-assisted) assumptions about the stability of
the data on the server. Open and close are differ-
ent, as they change state on the file server and
therefore cannot be cached. If the file content is
cached locally, waiting for the opened file handle
from the server is unnecessary, as it will not be
used for serving data from the local cache. This
can be a problem especially over slow links with
hundreds of kilobytes of outstanding requests � it
will take sev eral seconds for the response from
the server to be received.

This can be solved by lazily waiting for the
file handle. The driver’s open method sends a
request to open a file handle, but returns immedi-
ately. Only if a read or write is actually issued,
the file handle is waited for. This way data can be
immediately served from the local cache if it is
available. When implementing this scheme, care
must be taken to handle open and close properly.
The file might be closed (and reopened) before
the original open request from the server returns,
so state must be maintained to decide if a
response to an open request should prompt clos-
ing the handle immediately.

Unix Open File Removal

An example user of inactive in the kernel is
the Unix file removal semantics, which state that
ev en after all links to a file are removed from the
file system directory namespace, the file will con-
tinue to be valid as long as there are open refer-
ences to it. A removed file will actually be
removed only when inactive is called.

NFS client implementations on Unix sys-
tems feature the silly rename scheme, whereupon
if a file is removed from a client host while it is
still in use, the NFS client renames the file to a
temporary name instead of deleting it. For exam-
ple, 4.4BSD uses the name .nfsAxxxx4.4 [16].
When the open file is finally closed, the inactive
routine is called and the renamed file is removed.
This scheme is due to the statelessness of the NFS
protocol and has four problems.

1. If the client crashes between rename and the
call to inactive, the renamed file is left dan-
gling [1].

2. The file is still accessible through the file sys-
tem namespace, although by a different name.

3. If another client removes the file, this scheme
does not work.

4. Empty directories with silly renamed files are
unremovable until the files have been closed.

A file handle’s usefulness in dealing with
the Unix open file semantics depends on file sys-
tem protocol. In NFS, file handles are stateless;
they are not explicitly opened and closed making
it clear they cannot support this kind of behavior.
The ssh sftp protocol uses file handles which are
opened or closed, but the protocol specification
[10] says that stateless or stateful operation is up
to the server implementation. However, upon
examination at least the OpenSSH sftpd supports
the semantics we desire. The 9P protocol specifi-
cation [11] leaves it open to the implementation
and states that Plan 9 itself will not allow to
access a removed file while implementations such
as the Unix server u9fs will allow it.

While a file system driver should transpar-
ently support the semantics local to the system it
runs on, such effort has not yet been made with
puffs and the distributed file system drivers
described in this document. They will work cor-
rectly with some servers and fail with others. As
distributed and local semantics can never truly
fully match, we do not consider this a big prob-
lem. If it is considered a problem, a silly rename
scheme can be implemented.
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4. Framework

Next, an abstract framework for implement-
ing distributed file systems [18] is presented. The
following properties of the framework are dis-
cussed:

• A buffering scheme for allocating memory for
protocol data units (PDUs) and matching
incoming buffers as responses to sent requests.

• Routines for cooperating multitasking, which
handle scheduling automatically for file sys-
tems using the framework.

• An I/O descriptor subsystem, which allows to
supply the framework with file descriptors
used for data transfers.

• An event loop which reads incoming data from
the I/O descriptors and the kernel, dispatches
requests and writes outgoing data.

To use the framework, the file system driver
must register callbacks which handle the driver
semantics. An overview is presented here and
each callback is later discussed in more detail.

readframe
Read a complete frame from the network into
the buffer provided by the framework.

writeframe
Write a complete frame. A buffer given by the
framework is used as the source for data.

framecmp
Compare two frames to see if the one is the
response to another.

gotframe
Called for incoming frames which are deter-
mined to not be responses to outstanding
requests.

fdnotify
Notify the file system driver of changes the
framework detected in I/O descriptor state.

4.1. Buffering

Sending and receiving traffic over the net-
work requires buffers which host the contents of
the protocol data units (PDUs). While the con-
tents of a PDU are specific to the file system, the
necessity of allocating and freeing memory for
this purpose is generic.

For the purpose of memory management,
puffs provides routines to store data in automati-
cally resizing buffer: the puffs framebuffers [18],
puffs_framebuf. In addition to automatic memory
allocation, the buffering routines provide a
read/write cursor, seeking ability, maximum

written data offset and remaining size. When
writing to a buffer it is possible to write as much
data as there is available memory, but reading
from the buffer will fail for locations beyond the
maximum written data offset.

Additionally, the buffer supports opening a
direct memory window to it. This is useful espe-
cially when reading or writing the buffer to or
from the I/O file descriptor, because it avoids hav-
ing to copy the data to a temporary buffer. As the
framework does not know if data is being read or
written in the window, the maximum size is also
increased to the maximum mapped offset. There-
fore, readers of the buffer should only map the
buffer size’s worth.

For processing the buffer contents, file sys-
tems typically want to add another layer which
understands the contents of the buffer. For exam-
ple, fs_buf_write4() would write 4 bytes of
data into the buffer using puffs_framebuf routines
after adjusting the byte order if necessary. Simi-
larly, fs_buf_readstr() would read a string
from the buffer using the protocol to determine
the length of a string at the current cursor posi-
tion. For example, for a protocol with "Pascal
style" strings, the routine would first read n bytes
to determine the string length and after that read
the actual string data.

4.2. Multitasking

As mentioned in the puffs introduction ear-
lier in Chapter 2, puffs implements its own multi-
tasking mechanism without relying on platform
thread scheduling. This means that in addition to
not requiring any data structure synchronization
calls in the file system driver4, resource sharing
can be better implemented and taken into account
by the framework.

Commonly, threaded programs rely on
implicit scheduling and contain local state in the
stack. If a threaded program executes a blocking
call, another thread is scheduled by the thread
scheduler. The blocked thread is released when
the blocking call completes. However, for distrib-
uted file systems the resource upon which block-
ing calls are made is the shared network connec-
tion, and therefore pure implicit state manage-
ment will not do: received data must be mapped
to the caller and additional state management is
required. The puffs framebuf framework takes
care of this state management and automatically

4 Unless the driver chooses to create threads on
its own, of course.
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schedules execution where required, therefore
making the task of file system implementation
easier.

The points to suspend execution of a
request are when a request is queued for network
transmission. The framework automatically
resumes the suspended request when the response
has been read from the network. This functional-
ity is discussed more later in the chapter "I/O
Interface".

4.3. I/O File Descriptor Management

By default the framework is interested in
the file descriptor which communicates puffs
operations between the kernel and userspace. If
the file system driver wishes the framework to lis-
ten to other descriptors, it must register descrip-
tors using the puffs_framev_addfd() call.
This can happen either when the file system driver
is started or at any point during runtime. The
prior is a likely scenario for client-server file sys-
tems after having contacted the file system server,
while the latter applies with peer-to-peer file sys-
tems as new peers are discovered. Conversely,
descriptors can be removed at any point during
execution. This releases buffers associated with
them, incoming and outgoing, and returns an error
to blocked operations allowing them to run to
completion.

I/O file descriptors have two modes:
enabled and disabled. A disabled file descriptor
will not produce any read or write events and
therefore the callbacks will not get executed. The
difference between disabling a descriptor and
removing it is that disabling leaves the buffers
associated with the I/O descriptor, incoming and
outgoing, intact. This is useful for example in
cases where the protocol has a separate data chan-
nel and the file system driver wishes to read data
from it only when a VFS read request has been
issued (see Chapter 4.6).

In addition to descriptor removal by the file
system driver, the the framework must deal with
abruptly closed connections. This means that it
must provide the file system driver a notification
when it detects an error condition with a descrip-
tor. The fdnotify() callback is used for this
purpose. As it is legal to half-close a file descrip-
tor and still use the other side [19], the framework
must track and notify the file system driver sepa-
rately of the closing of either side. Similarly to
file system driver initiated descriptor removal, the
framework automatically releases all blocked

waits and flags them with an error also in this
case.

Once a descriptor is closed, certain condi-
tions are imposed by the framework. It is not pos-
sible to write to a descriptor with the write side
closed and attempting to do so immediately
returns an error. Howev er, if only the read side is
closed, it is still possible to write to a file descrip-
tor but waiting for the result is not allowed. The
file system driver can further decide if this is a
sensible condition in the fdnotify() callback.
It also has the option of just giving up completely
on a file descriptor when it receives the notifica-
tion of either direction closing.

4.4. I/O Interface

Each file descriptor has its own send queue.
A PDU can be queued for sending using four dif-
ferent routines:

• enqueue_cc: yield the current execution con-
text until a response is received after which
continue execution.

• enqueue_cb: do not yield. instead, a callback
function, a pointer to which is given as a
parameter, will be called from the eventloop
context when the response is received.

• enqueue_justsend: just enqueue and do not
yield. A parameter controls whether or not a
response is expected. This is required to dif-
ferentiate between a response and a request
from the file server. Howev er, the contents of
the possible response are discarded.

• enqueue_directsend: yield until the buffer has
been sent. Does not assume a response.

As the framework is completely protocol
agnostic, it delegates the job of reading and writ-
ing frames to and from the descriptor to the file
system driver via the readframe() and
writeframe() callbacks. Readframe is called
for incoming data while writeframe is used to
transmit buffers in the send queues. As these rou-
tines are in the file system driver and can examine
the buffer contents, they also know when a com-
plete PDU was received or written. They signal
this information back to the framework.

Of the above enqueueing routines, the first
three require the ability to match an incoming
response to a request sent earlier. The
framecmp() callback provided by the file system
driver is used for this. Once a complete frame has
been read from the network, all the outstanding
requests for the descriptor the frame was read
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from are iterated over. As requests typically
arrive in-order and even for a very busy file sys-
tem the maximum number of outstanding requests
is typically tens, the linear scan is cheap. Once
the original request for the newly arrived response
is located, execution is resumed.

If no matching request for the frame is
found, the gotframe() callback is called. If the
callback does not exist, the frame is dropped.

In case the comparison routine can deter-
mine from the incoming frame under examination
that it is not a response at all, it can set a flag to
short-circuit the iteration. This avoids going
through all outstanding requests in cases where it
is evident that the incoming frame is a request
from the server and not a response to any of the
file system driver’s requests.

4.5. Event loop

Finally, the event loop is discussed. It is the
driving force behind file system driver operation
and dispatches handlers for requests and
responses as they come in.

The event loop, puffs_mainloop(),
provided by libpuffs is a generalized version of
the event loop first used directly in the psshfs file
system [8]. Initially psshfs and 9puffs had their
own event loops due to the standard libpuffs event
loop lacking the features to support a distributed
file system. However, as the framework was cre-
ated the event loop was enhanced so that distrib-
uted file systems can use it. This new version is
presented as a diagram in Figure 4 and as pseu-
docode in Figure 5.

Each file system driver can specify a "loop
function". This is a simple callback which is
called once every loop. Single-threaded file
servers can use it for tasks which need to be
executed periodically. If the loop function needs
periodical execution, maximum blocking time for
the async I/O multiplexor in the event loop can be
set using puffs_ml_settimeout(). While
not realtime quality, this timeout is fairly accurate
for correctly implemented file system drivers until
very high loads.

For enabled descriptors, read polling is
always active. Write polling is enabled only
selectively, as otherwise the write event would
always trigger. Its enable and disable in the event
loop depend on the previous status and if there is
data in the queue. Also, since the common case is
that all enqueued data can be written immediately,
the event loop attempts to write enqueued data

Figure 4:
Event Loop

ev ent
loop
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network /
kernel
input

executing
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waiting op

waiting op

...

read cbwrite cb

continue

continue()

yield()

handle()

enqueue

before enabling write polling for a certain
descriptor. Only if all data cannot be written,
write polling is enabled.

The I/O multiplexor kevent() system call
uses the kqueue [20] event notification mecha-
nism. It operates similarly to poll() and
select(), but is a stateful interface which does
not require the full set of descriptors under sur-
veillance to be communicated to the kernel in
each call. However, changes can be made simul-
taneously to event query, and the event loop uses
this to change the status of write polling when
necessary.

4.6. Other Uses: The Portal File System

Distributed file systems are not the only
application for the puffs buffering and event
framework. Another example for the use of such
a framework was found in the reimplementation
of the portal file system [21] using puffs.

The portal file system is a 4.4BSD file sys-
tem which provides some support for userspace
file systems. It does not, strictly speaking, imple-
ment a file system, but relies on a provider to
open a file descriptor, which is then passed to the
calling process. What happens is that a process
opening the file /p/a/file will receive a file
descriptor as the result of the open operation and
is in most cases not able to distinguish between an
actual file system backing the file descriptor. A
configuration file specifies which provider the
portal daemon executes for which path.
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Figure 5:
Event Loop Pseudocode

while (mounted) {

fs->loopfunc();

foreach (fd_set) {

if (has_output)

write();

}

foreach (fd_need_writechange) {

if (needs_write && !in_set)

add_writeset();

if (!needs_write && in_set)

rm_writeset();

}

kevent();

foreach (kevent_result) {

if (read)

input();

if (write)

output();

}

}

To facilitate this type of action, the original
portal file system passes a pathname to the
userspace portal daemon as part of the open
method. Upon receiving a request, the daemon
fork()s, lets the child take care of servicing the
request, and listens to more input from the kernel.
After the child has opened the file descriptor, it
communicates the result back to the kernel. The
kernel then transfers this descriptor to the calling
process. The child process exits, but depending
on the type of provider it might have spawned
some handlers e.g. using popen(). Other types,
such as TCP sockets, require no backing process.

The puffs portal file system driver behaves
toward applications exactly like the old portal file
system and even reuses most of the code of the
original portald userspace implementation. How-
ev er, puffs portalfs operates like a real file system
in the sense that the file system driver interprets
all the requests instead of a file descriptor being
passed to a caller.

The problem in using original portald code
is that the portal providers can execute arbitrary
blocking sequences, and allowing one to execute

in the context of the file server blocks the access
to other files. This can be avoided by either mul-
tiple processes or multiple threads. The original
portald code we use relies on processes for
cleanup in some cases, such as cleaning up after
popen(), so processes were chosen.

Operation of the new portal file system
driver is as follows. When the file system open
method is called, the file system driver opens a
socketpair and forks off a child process. The
driver then yields after enabling the child socket
descriptor as a valid I/O descriptor. Meanwhile,
the child proceeds to open a file descriptor and
sends it to file server using descriptor passing5.
After receiving the descriptor the file system
driver returns success to the process calling open.

Read and write calls require asynchronous
I/O for the file system driver to support concur-
rent access properly. As opposed to psshfs and
9puffs, the descriptors produced by the portal dae-
mon are enabled for reading only when an incom-
ing read request arrives from the kernel. This way
data is consumed from the descriptor only when
there is a read request active.

The read request uses the framework’s
directreceive routine for receiving data in which
the file system driver supplies the buffer to receive
data to without having to get it via gotframe().
By threading the number of bytes the kernel
wishes to read from the file to the readframe rou-
tine using the buffer, the driver can also avoid
reading too much data. Reading too much data
would result in having to store it for the next read
call.

The reimplementation performs better in
some cases. Since puffs calls are interruptible, the
calling processes can interrupt operations. The
original portalfs implementation had a problem
that if the open call on portalfs blocked, the call-
ing process could not be interrupted. An example
is an unreachable but not rejected network con-
nection, which will stall until the connect() sys-
tem call of the portald provider child times out.
As a downside for this implementation, calls now
need to traverse the user-kernel boundary three
times instead of operating directly on the file
descriptor in the calling process. However, as
portalfs is rarely, if ever, used in speed-critical
scenarios, this does not constitute a problem.

5 Another option would be to issue a version of
fork() which shares the descriptor table between the
parent and the child, but some form of wakeup from
the child to the parent is required in any case.
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4.7. Other Uses: Kernel VFS Communication

If we return to Figures 1 and 2, we notice
that the situation between the file server and and
kernel virtual file system is symmetric: both are
used by the file system driver through a communi-
cation protocol. After writing the framework,
kernel communication could be adopted to use it
instead of requiring special-purpose code. All
incoming requests from the kernel are treated as
gotframe and are dispatched by the library to
the correct driver method. Using the framework
for kernel communication also enables forward-
ing the puffs protocol to remote sites just by
adding logic to route PDUs.

Not all communication in the file system is
originated by the kernel. For example, the file
system driver can request the kernel to flush or
invalidate its caches. In this case a request is send
to the kernel. As the response to the request is not
immediate, it must be waited for. By treating the
kernel virtual file system just as another file
server, the framework readily handles yielding the
caller, processing other file system I/O mean-
while, and rescheduling the caller back when the
response arrives. This scheme also works inde-
pendent of if the kernel virtual file system is on
the local machine or a remote site.

5. Comparisons

This section presents three comparative
studies for the framework. The first one compares
implementation code size before and after the
framework was introduced. The second measures
performance between userspace file system driv-
ers and the in-kernel NFS. Finally, a feature and
usage comparison between psshfs and NFS is pre-
sented.

5.1. Code Size Comparison

Originally, both psshfs and 9puffs were
implemented with their own specific buffering
routines and event loop. These routines were first
written when developing psshfs and were adapted
to 9puffs with some changes.

Figure 6 (NFS included for comparison)
shows that two thirds of the code used for net-
working and buffering could be removed with the
introduction of the framework; what was left is
the portion dealing with the file system protocol.
As a purely non-measurable observation, the code
abstracted into the framework is the most difficult
and error-prone code in the file system driver.

Figure 6:
Code Size Comparison

total lines of code

before after save (%)

psshfs 2885 2503 11%
9puffs 2601 2140 18%
NFS 24286 n/a n/a

code involved in events / networking / buffering

before after save (%)

psshfs 355 119 66%
9puffs 411 150 64%

Building packets is done by linear construction
code while parsing is the reverse operation. On
the other hand, the network scheduling code and
ev ent loop depends on timings and the order in
which events happen. Moreover, the data struc-
tures required to hook this into the puffs multi-
tasking framework are not obvious. With the net-
working framework the file system driver author
does not need to worry about these details and can
concentrate on the essential part: how to do proto-
col translation to make the kernel virtual file sys-
tem protocol and the file server talk to each other.

5.2. Directory Traversal

In this section we explore the performance
of a file system driver and issues with the file sys-
tem protocol when executing the commonplace
Unix long listing: ls -l.

The command ls -l is characterized by
three different VFS operations. First, the direc-
tory is read using readdir. Second, the node for
each directory entry is located using the lookup
operation. Finally, the node attributes for the ls
long listing are fetched using the getattr opera-
tion. These operations map a bit differently
depending on the file system protocol. For exam-
ple, on NFSv3 the readdir operation causes an
NFS_READDIR RPC to be issued. For each
lookup, NFS_LOOKUP procedures are issued.
Since the NFS_LOOKUP operation response also
contains the node attributes, they are cached in the
file system when getattr is called and no network
I/O will be required for satisfying the request.

As discussed already in Chapter 3.2, the
bottleneck in the above is the serial nature of the
process: one operation must complete before the
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Figure 7:
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next is issued. NFS solved this by introducing the
NFS_READDIRPLUS procedure in protocol ver-
sion 3. It returns the attributes for all the nodes in
the readdir response. That way the file system
driver will already have the information for
lookup/getattr cached when it is requested. How-
ev er, this information might well be wasted, since
readdir is acting only opportunistically. Even fur-
ther, as the BSD NFS implementation creates a
new vnode for each previously non-existing one
(to cache the attribute information in), listing a
directory might prompt valid vnodes to be recy-
cled. This is why the use of NFS_READ-
DIRPLUS is disabled by default and recom-
mended only for high latency mounts.

The sftp (and 9P) protocol always includes
the attribute information in readdir responses.
Our implementation differs from the kernel ver-
sion in such a fashion that we cache the attributes
and the directory read results in the directory
structure; not new nodes. Therefore this solution
does not force kernel vnodes to be recycled �

Figure 8:
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although it could not do so even if it wanted to, as
vnode life cycles are completely controlled by the
kernel in puffs.

The ls -lR measurements are for the
time it takes to traverse a directory hierarchy with
around 4000 files. The initial measurements were
done over a 11Mbps wireless link with a 3ms
RTT. These results results showed the psshfs was
faster than NFS � a result quite unexpected. The
cause was discovered to be the bandwidth use, so
another measurement was done with the ssh com-
pression option being on (default compression
level). This improved results even further. Tech-
nically it is possible to compress the NFS traffic
also using the IP Payload Compression Protocol
(IPComp), but doing so is multiple times more
difficult than using the ssh compression option
and the effects of doing so were not investigated.

The measurements presented in Figure 7
contain both the duration for the operations on a
high-latency, low bandwidth link and a low-
latency high bandwidth local area network.
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Performance is measured both for coalesced
getattrs and individual ones. NFS is mounted
using a TCP mount. Apart from compression,
psshfs is used with OpenSSH default options.

For the preloaded attributes case, it is easy
to see that psshfs wins on the slower network
because it requires much less data to be trans-
ferred. However, on the high speed network the
performance penalty inherent in multiple context
switches per operation is evident. Even though
latency is canceled for the link by using attribute
preloading, the psshfs file system server must still
getattr each file using individual system calls
when the NFS server can simply perform these
operations inside the kernel without context
switch penalty. Additionally, psshfs must encrypt
and decrypt the data. Finally, we do not control
the sftp server and cannot optimize it.

Without preloading attributes ("individual
getattr") NFS dominates because the operation
becomes driven by latency, and NFS as a kernel
file system has a smaller latency.

5.3. Data transfer

To measure raw data transfer speeds, large
files were read sequentially over a local area net-
work using both NFS and 9puffs6. The results are
hardly surprising, as reading large files uses read-
ahead heuristics. Data requested by the applica-
tion has already been read into the page cache by
the read-ahead code and can be delivered to the
application instantly without consulting the file
system server. It should be noted, though, that the
userspace model uses more CPU and on fast net-
works such as 10GigE, the performance of the
userspace model may be CPU-bound.

5.4. psshfs vs. NFS

As NFS and psshfs are roughly equivalent
in performance, it is valid to question which one
should be preferred in use. The following section
lists reasons NOT to use the protocol in question:

psshfs:

• No support for hard links. Tw o hard-linked
directory entries will be treated as two files.

• No support for devices, sockets or fifos.

• No support for user credentials in the protocol:
one mount is always one set of credentials at
the server end.

6 psshfs was attempted first, but the CPU require-
ments for the encryption capped out the CPU of the
server machine.

• No support for an async I/O model: there is no
certainty if written data is committed to disk.

NFS:

• Setup is usually a heavyweight operation
meaning the protocol cannot be used without
considerable admin effort.

• It is difficult, although entirely possible, to
make the protocol operate from a remote loca-
tion through IPSec tunnels.

• There is no real security model in the currently
dominant NFSv3 version.

6. Conclusions and Future Work

This paper explored implementing distrib-
uted file system drivers in userspace on top of the
puffs Pass-to-Userspace Framework File System.
It explained concepts relevant to implementing
distributed file systems and pointed out unex-
pected pitfalls.

A framework for implementing distributed
file systems was presented. The I/O file descrip-
tors, callbacks, continuations and memory buffers
were discussed and interfacing with them from
the file system driver was explained.

The performance characteristics of
userspace file system drivers and userspace file
systems was lightly measured and analyzed. The
conclusion was that even though in-kernel file
systems usually perform better, userspace file sys-
tems can shrink the gap by the possibilities in a
more flexible programming environment.

Future work includes implementing a peer-
to-peer file system on top of the framework.
Notably though, the portal file system implemen-
tation briefly mentioned in this paper already
shares some similar characteristics to peer-to-peer
file systems in that it communicates using multi-
ple I/O descriptors concurrently.

As distributed file systems have a high price
to pay for reloading information from the server,
the information should be cached as much as pos-
sible. File data is cached effectively in the kernel
page cache, although a file system driver wanting
a persistent cache will have to implement it by
itself. However, metadata caching is currently
completely up to the file system driver. This
could be improved in the future by providing a
method for caching metadata.

Related to metadata caching is the observa-
tion that the optimal way to perform directory
reading and lookup is a similar procedure in both
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of the distributed file systems we went over in this
paper. The procedure should be generalized for
any file system driver. This includes attribute
caching for directory entries along with optionally
preloading the attributes even though the file sys-
tem protocol does not directly support it.

Av ailability

All of the code discussed in this paper is
available for download and use in the develop-
ment branch of the NetBSD [7] operating system.
This development branch will eventually become
the NetBSD 5.0 release.

For information on how to download the
code in source form or as a binary release, please
see http://www.NetBSD.org/. Documentation for
enabling and using the code is available at
http://www.NetBSD.org/docs/puffs/
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