
Using FreeBSD to Promote Open Source Development Methods

Brooks Davis, Michael AuYeung, Mark Thomas
The Aerospace Corporation

El Segundo, CA
{brooks,mauyeung,mathomas}@aero.org

Abstract

In this paper we present AeroSource, an initiative to
bring open source software development methods to
internal software developers at The Aerospace Corpo-
ration. Within AeroSource, FreeBSD is used in sev-
eral key roles. First, we run most of our tools on
top of FreeBSD. Second, the ports collection (both
official ports and custom internal ones) eases our ad-
ministrative burden. Third, and most importantly the
FreeBSD project serves as an example and role model
for the results that can be achieved by an open source
software projects. We discuss the development infras-
tructure we have built for AeroSource based largely
on BSD licensed software including FreeBSD, Post-
greSQL, Apache, and Trac. We will also discuss
our custom management tools including our system
for managing our custom internal ports. Finally, we
will cover our development successes and how we use
projects like FreeBSD as exemplars of open source
software development.

1 Introduction to Aerospace

The Aerospace Corporation operates a Federally
Funded Research and Development Center for Na-
tional Security Space. From the corporate web
site[Aerospace]:

Since 1960 The Aerospace Corporation has
operated a federally funded research and
development center in support of national-
security, civil and commercial space pro-
grams. We’re applying the leading technolo-
gies and the brightest minds in the industry
to meet the challenges of space.

The company employs approximately 2400 engineers
on a wide range of disciplines. In today’s engineering

c©2007-2008 The Aerospace Corpora-
tion.

climate, a large potion of these engineers write soft-
ware, up to thousands of programs by some counts.

Due in part to the fact that these engineers are
not trained software developers, the quality of soft-
ware and software development methods varies widely.
Since Aerospace helps oversee the development of mas-
sive software projects, we have a significant number
of people who are trained to develop these types of
software. They represent one of two historical groups
of developers at Aerospace. They use big, heavy de-
velopment processes which produce reliable software
suitable for all sorts of applications, but require signif-
icant numbers of full-time developers and large paper
trails.

The other camp takes a laissez-faire approach to soft-
ware development. They tend to use little or no pro-
cesses to the point that one of the more advanced
groups was using a shared file system for development
with a white board to lock files before the AeroSource
team started working with them. As would be ex-
pected, this approach to development yields highly
variable results. A number of pieces of software are
very useful and some are even distributed outside the
company, but even with those we’ve heard reports of
problems like features disappearing between releases.

Past attempts to encourage developers of the more
important pieces of software to adopt more rigorous
development practices have met with limited success.
One problem is that these developers quite reason-
ably fear the more heavy weight processes they see
employed to build big systems. In addition to the
process overhead of these methods developers worry
about the cost of tools and the need to learn new
tools. Other problems include inertia in the face of
demanding schedules.

AeroSource is our current attempt to bring modern
software development methods to the more ad-hoc de-
velopment projects within Aerospace. We are pro-
moting the idea that using tools and methods from
open source software development provides a useful
midpoint between big, expensive software methods
and current practices. In addition to promoting open

49

source software and development methods, we are also
promoting the open source development philosophy
within the company. We call this internal open source,
enterprise source software. Enterprise source software
enshrines principles of open source, but is restricted to
the enterprise. Users of enterprise source are free to
read the source code, build and run it, make changes
to it, and redistribute modified versions of it as long as
they do so within the bounds of the company. Exter-
nal software distribution remains governed by existing
processes.1

In the rest of this paper we discuss our experiences
designing, developing and promoting AeroSource and
the enterprise source concept. We discuss our use of
FreeBSD throughout, both as the foundation of our
infrastructure and as an example of both what can
be achieved with open source methods and one set
of highly effective methods. In the next section we
discuss open source and enterprise source software.
We then discuss our efforts to promote the enterprise
source concept and the reactions we have encountered.
Coming from the open source software world, we of-
ten find it hard to credit the issues people raise, but
we have found it is critical to do so if we are going
to convince people to support enterprise source. As
part of this section we discuss our implementation of
AeroSource, a resource for collaborative software de-
velopment using FreeBSD and other open source tech-
nologies. We also talk about our successes and failures
in recruiting projects to use it. Finally we conclude
with a discussion of future directions for AeroSource.

2 Open Source and Enterprise Source
Software

According to the Open Source Initiative “open source
is a development method for software that harnesses
the power of distributed peer review and transparency
of process.”[OSI] Many definitions of open source ex-
ist including the OSI Open Source Definition[OSD].
For our purposes we define an open source project as
one that allows the four freedoms defined by the Free
Software Foundation[Wikipedia] (the wording below
is ours):

• The freedom to run the software, for any purpose

• The freedom to study how the software works,
and adapt it to your needs

• The freedom to redistribute copies
1We have ambitions to encourage the release of more

Aerospace code as open source. Promoting enterprise source
the first of several steps in that direction.

• The freedom to improve the software, and release
the improvements to anyone for the benefit of all

Advocates of the open source development mode argue
it has numerous benefits. Those benefits include “bet-
ter quality, higher reliability, more flexibility, lower
cost, and an end to predatory vendor lock-in”[OSI].
These benefits derive directly from the four freedoms
listed above. The quality and reliability claims de-
rive from the idea that with more people working on
the code, bugs are more likely to be discovered and
fixed. There is a common idea in the open source
community that “given enough eyeballs, all bugs are
shallow”[CatB]. In our experience this is true for sim-
pler bugs, but for very complex issues, there often are
not enough people who understand the problem for
this to work. One case where we do find quality to
be better is adherence to unified code styles. In our
experience and that of others we have talked to, large
open source projects tend to have cleaner, more read-
able source code that internally developed code. Flex-
ibility and protection from lock-in derive from the fact
that users can modify the software themselves or hire
someone to make the changes they want. As a result
users can adapt to unforeseen software needs and add
the functionality they want rather than things the de-
velopers’ marketing department thinks they can sell.
Lower cost is obvious since the software is free.

In addition to these benefits, open source development
methods provide other advantages within the enter-
prise. Because open source developers often have an-
other day job, they generally can not be bothered with
excessively involved procedures. Thus, open source
projects tend to use processes that are low friction. By
adopting these processes, developers can build higher
quality software without resorting to traditional, high
overhead methods. Another benefit within the enter-
prise is that if people publicly share their code and
others can find it, duplication of effort can be reduced.
For example the world only needs so many tools to
parse the same telemetry format.

Much of the software produced at Aerospace that
would benefit from the wider exposure open source
development brings is not possible or practical to re-
lease to the general public for a range of technical,
legal, and political reasons. When promoting open
source methods, we discovered we needed a term to
describe the internal use of those methods since sim-
ply talking about open source or internal open source
often lead people to think we would be posting their
code to Source Forge or another public site. To cap-
ture this concept we coined the term enterprise source
software. Enterprise source software is everything that
open source software is, but restricted to an enterprise.
All of the four freedoms hold for enterprise source soft-

50

ware, but with the added restriction that it must stay
within the organization. At Aerospace this means that
enterprise source source software may leave the com-
pany only though official software release channels.

We believe that the growth of enterprise source at
Aerospace will improve the quality of the software we
develop and increase the skill of our software develop-
ers.

3 Promoting Enterprise Source

In an effort to improve the development practices used
by the less formal software projects at Aerospace we
are working to promote the enterprise source concept
for internal use. Our efforts center on encouraging
the internal publication of source code and the use of
open source tools and methods to develop that soft-
ware. AeroSource, our internal collaborative software
development environment, lies as the heart of our ef-
forts. It allows users to “get their feet wet” without
all the effort of maintaining their own systems. We
discuss AeroSource in detail later in this section.

3.1 Promotion Efforts

Our promotional efforts are targeted in several differ-
ent directions. We work to educate Aerospace em-
ployees on the benefits of open source software and
development methods and encourage them to adopt
them where practical. We also work to convince man-
agement of these benefits to support them from above
in addition to our more grass roots efforts.

The most basic level of advocacy is using open source
software or open source derivatives. Most people in
our organization use BSD, Linux, or Mac OS exclu-
sively and all our department servers are hosted on
open source OSes. We also host a variety of semi-
official corporate services including open source soft-
ware mirrors, a list server, and a number of wikis.

The next level of advocacy is formal open source edu-
cation. We have given a number of lectures on benefits
of open source and open source development meth-
ods at internal forums. We also developed a tutorial
on open source development methods which we pre-
sented at the Ground System Architecture Workshop
in 2007[GSAW]. In these talks we promote the variety
of great software available as open source both for it’s
own sake and to demonstrate that the non-traditional
development efforts involved can and do produce top
quality software.

FreeBSD is a key component of this promotion ef-
fort. We use it extensively in our infrastructure and
because we are extremely familiar with it’s develop-
ment process, we can speak with authority on the
processes involved. This is helpful in convincing peo-
ple that we really do know what we are talking about
with regard to open source development. The avail-
ability to resources such as the FreeBSD Develop-
ers Handbook [GSAW] and Robert Watson’s How the
FreeBSD Project Works[Watson] talk helps in this re-
gard. Other projects we use as examples include Gan-
glia, K Desktop Environment (KDE), and Linux.

The most specific form of advocacy is AeroSource.
With AeroSource we give developers the tools they
need and help train them in the tools and best prac-
tices for using them. We help with things like reposi-
tory layout, process, and usage. Eventually we hope to
provide continuous integration tools like tinderboxes.

3.2 An Overview of AeroSource

AeroSource provides collaborative tools to software
projects including tightly integrated version control,
bug tracking, and a wiki. We also provide e-mail lists
that can be integrated with the bug tracking and ver-
sion control systems. This functionality is provided
by Trac and GNU Mailman with version control pro-
vided by Subversion. Trac is one of several projects
that aim to create a complete, web-based collabora-
tive environment for open source development. Trac
is open source (BSD licensed) and is built on top of a
large stack of other open source software. In our in-
stallation we use Subversion for version control, Post-
greSQL as the database, Apache for the web servers,
and FreeBSD for the operating system.

When developing AeroSource we looked at several al-
ternatives including GForge, SourceForge, and build-
ing our own system. GForge was rejected due to prior
experience: it worked, but upgrades were time con-
suming and difficult. SourceForge was not an option
because we wanted to keep software internal and we
were not prepared to purchase the commercial ver-
sion. After finding Trac we concluded that any ben-
efits from building our own system were likely to be
minimal compared to starting with an already work-
ing system. Systems we did not consider at the time
but would consider today include CollabNet and Ret-
rospectiva.

Today, AeroSource contains over 50 projects ranging
from small repositories of scripts to large established
projects. Our most prominent win is is the Satellite
Orbital Analysis Program (SOAP), a cross platform
(MacOS, UN*X, and Windows) 3D orbit visualization

51

Figure 1: AeroSource.aero.org

and analysis program. SOAP has been under devel-
opment for more than a decade in numerous forms
and is one of Aerospace’s crown jewels, so winning
the development team over was a major milestone for
AeroSource. Other projects include collections of Perl,
IDL, and Matlab scripts and configuration files for a
number of internal systems including AeroSource it
self.

Users seem generally pleased with Trac and Subver-
sion, but we have encountered a few problems. The
most severe one is that the wiki implementation has no
support for simultaneous edits. In it’s current form,
if two users edit the same page, the second user loses
all their work when they submit. This is arguably
the worst of all possible behaviors. Otherwise, Trac is
working fairly well for us. The only other significant
issue we have found is that some parts of Trac are
more easily customized that others. There is a solid
plugin framework, but if what you want cannot be ac-
complished through it maintaining modifications can
be complex.

3.3 Maintaining AeroSource

With AeroSource, we do our best to “eat our own dog
food” and use Trac and Subversion as much as pos-
sible to aid in maintenance. We store configuration,
custom Trac modules, and administration scripts in
AeroSource. The project homepage is a Trac instance
and we use the ticket system to track most mainte-
nance operations. The AeroSource front page can be
seen in Figure 1.

The maintenance operations of AeroSource are fairly
normal, but a few things stand out. We use
freebsd-update to keep the base system up to date
and install most of our software using the FreeBSD

ports collection.

One one very useful customization we have de-
veloped is a set of local ports stored in an
AeroSource hosted subversion repository. We call
this collection AeroPorts. We check our ports
out under /usr/ports/aero and ports live in
<category>/<port> subdirectories. Figure 2 shows
the top-level Makefile and Figures 3 and 4 show an
example of the make files for each <category> sub di-
rectory. With this setup, we can easily maintain local
ports of things that are not useful to the general pub-
lic, or custom modifications of existing ports to per-
form non-standard tasks. One example of this is a cus-
tom version of the security/pam ldap port that au-
thenticates based on LDAP queries on userid’s instead
of usernames. Another is the misc/aero-bootstrap
port which is a meta-port we use to install basic ad-
ministrative tools on our FreeBSD machines. This
method of incorporating local ports in the ports tree
is based on a suggestion by Scot Hetzel on the freebsd-
ports mailing list[Hetzel].

To simplify management of these local ports we have a
wrapper for the portsnap and svn commands call apt
(Aerospace Ports Tool). The apt command performs
an svn update and portsnap update using the “-l
descfile” option to refresh the ports tree and build
combined ports/INDEX* files as needed. This yields
functionality virtually identical to that of portsnap,
but with full integration of our local ports.

3.4 Results

Thus far, our efforts have met with a number of suc-
cesses, but we still have some work to do. As we
mentioned in Section 3.2 we have recruited over 50
projects to AeroSource thus far. We have also had
some projects that were not able to become enterprise
source software express interest in the tools.

The import of the Satellite Orbital Analysis Program
(SOAP) to AeroSource represents a major win and
were in fact funded to make the transition. The first
release has not yet been cut, but development is well
under way and the developers have made significant
progress in using the tools.

Some other projects have resisted the idea for a vari-
ety of reasons. Some want absolute control over the
code they perceive ownership of. Reasons for wanting
that control range from not wanting others to see their
code to wanting to ensure that no one releases a modi-
fied version lest they be blamed for bugs introduced by
someone else. We have had some success with the first
case and a bit with the second, but we have not won all

52

COMMENT= Ports specific to Aerospace Corp

SUBDIR += archivers
SUBDIR += astro
SUBDIR += misc
SUBDIR += net
SUBDIR += science
SUBDIR += shells
SUBDIR += sysutils

descfile:
@cd ${. CURDIR }; ${MAKE} describe | grep -v ’^===>’ > descfile

.include <bsd.port.subdir.mk>

Figure 2: aero/Makefile

COMMENT= Local Aerospace system utilities

SUBDIR += apt
SUBDIR += diskprep -aero
SUBDIR += macports
SUBDIR += powerctl

.include <bsd.port.subdir.mk>

Figure 3: aero/sysutils/Makefile

This file needs to be copied into every aero /*/ subdirectory to set

common variables.

Used to set the origin of the local port

PKGORIGIN= aero/${PKGCATEGORY }/${PORTDIRNAME}

Used in the local ports tree to set dependencies on other local ports.

AEROPORTSDIR= ${PORTSDIR }/aero

#Uncomment if you want your local packages to have a "-aero" suffix.

#PGKNAMESUFFIX ?= -aero

Figure 4: aero/sysutils/Makefile.inc

53

the arguments. In once case we have even heard that
developers have threatened to quit if forced to open
their code. A variant of the argument that only the
current developers know enough to modify the code
is that only the developers can use the code properly.
We agree this can happen, but think that is not in and
of itself a good reason not to open the code. These
were all arguments we expected to some extent based
on past experiences. We also ran into a couple we were
not expecting. In one case some people felt other de-
velopers should implement a certain algorithm as a
right of passage. We weren’t sure how we felt about
that one. In another case, developers were concerned
that people might like their code so much they should
improve it and then the developers would have to in-
corporate the improvements. We thought seemed like
a good thing rather than a problem.

4 Future Directions & Conclusions

We are generally pleased with our progress in intro-
ducing open source software development methods to
Aerospace. We a large organization that is largely
staffed by engineers with decades of experience, we do
not expect to convert everyone over night. We feel
many pieces of software within Aerospace could also
benefit from full, open source release, but for now we
are content with modernizing internal development ef-
forts.

AeroSource itself is functioning very well. We hope
to continue to incremental improve the management
processes to make project setup easier and to enhance
the ability of our users to perform their own project
maintenance. We will also continue to monitor Trac
development and the development of competing sys-
tems to provide our users with the best environment
we can. Other future work includes more tutorial ma-
terials and more streamlined startup processes for new
projects.

References

[Aerospace] The Aerospace corporate web site.
October 11, 2007.
http://www.aero.org/

[CatB] Eric S. Raymond. The Cathedral and the
Bazaar. September 11, 2000.
http://www.catb.org/∼esr/writings/
cathedral-bazaar/cathedral-bazaar/

[GSAW] The FreeBSD Project. The FreeBSD
Developers’ Handbook. http:

//www.freebsd.org/doc/en US.ISO8859-1/
books/developers-handbook/index.html

[GSAW] Brooks Davis, Sam Gasster, Jorge Seidel,
Mark Thomas. Open Source Software Methods
in Ground Systems.

[Hetzel] E-mail to the freebsd-ports@freebsd.org
mailing list. November 14, 2006.
http:

//docs.freebsd.org/cgi/mid.cgi?db=irt&id=

790a9fff0611141011q4bd9ee97h9357e6d959f95abb@

mail.gmail.com

[OSD] The Open Source Initative’s Open Source
Definition. July 7, 2006.
http://www.opensource.org/docs/osd

[OSI] The Open Source Initative web site. January 23,
2008.
http://www.opensource.org/

[Watson] Robert N. M. Watson. How the FreeBSD
Project Works. In Proceedings, 2006 EuroBSDCon,
Milan, Italy.

[Wikipedia] Wikipedia article on free software. January
23, 2008.
http://en.wikipedia.org/wiki/Free software

All trademarks, service marks, and trade names are the
property of their respective owners.

54

