
Tracking FreeBSD in a Commercial Setting

M. Warner Losh
Cisco Systems

Broomfield, CO
imp@freebsd.org

Abstract

The FreeBSD project publishes two lines of source code:
current and stable. All changes must first be committed
to current and then are merged into stable. Commer-
cial organizations wishing to use FreeBSD in their prod-
ucts must be aware of this policy. Four different strate-
gies have developed for tracking FreeBSD over time. A
company can choose to run only unmodified release ver-
sions of FreeBSD. A company may choose to import
FreeBSD’s sources once and then never merge newer
versions. A company can choose to import each new
stable branch as it is created, adding its own changes
to that branch, as well as integrating new versions from
FreeBSD from time to time. A company can track
FreeBSD’s current branch, adding to it their changes
as well as newer FreeBSD changes. Which method a
company chooses depends on the needs of the com-
pany. These methods are explored in detail, and their
advantages and disadvantages are discussed. Tracking
FreeBSD’s ports and packages is not discussed.

1 Problem Statement

Companies building products based upon FreeBSD have
many choices in how to use the projects sources and
binaries. The choices range from using unmodified
binaries from FreeBSD’s releases, to tracking modify
FreeBSD heavily and tracking FreeBSD’s evolution in
a merged tree. Some companies may only need to main-
tain a stable version of FreeBSD with more bug fixes
or customizations than the FreeBSD project wishes to
place in that branch. Some companies also wish to
contribute some subset of their changes back to the
FreeBSD project.

FreeBSD provides an excellent base technology with
which to base products. It is a proven leader in per-
formance, reliability and scalability. The technology

also offers a very business friendly license that allows
companies to pick and choose which changes they wish
to contribute to the community rather than forcing all
changes to be contributed back, or attaching other unde-
sirable license conditions to the code.

However, the FreeBSD project does not focus on inte-
gration of its technology into customized commercial
products. Instead, the project focuses on producing a
good, reliable, fast and scalable operating system and
associated packages. The project maintains two lines of
development. A current branch, where the main devel-
opment of the project takes place, and a stable branch
which is managed for stability and reliability. While the
project maintains documentation on the system, includ-
ing its development model, relatively little guidance has
been given to companies in how to integrate FreeBSD
into their products with a minimum of trouble.

Developing a sensible strategy to deal with both these
portions of FreeBSD requires careful planning and anal-
ysis. FreeBSD’s lack of guidelines to companies leaves
it up to them to develop a strategy. FreeBSD’s devel-
opment model differs from some of the other Free and
Open Source projects. People familiar with those sys-
tems often discover that methods that were well suited
to them may not work as well with FreeBSD’s develop-
ment model. These two issues cause many companies
to make poor decisions without understanding the prob-
lems that lie in their future.

Very little formal guidance exists for companies wishing
to integrate FreeBSD into their products. Some email
threads can be located via a Google search that could
help companies, but many of them are full of contradic-
tory information, and it is very disorganized. While the
information about the FreeBSD development process is
in the FreeBSD handbook, the implications of that pro-
cess for companies integrating FreeBSD into their prod-
ucts are not discussed.

27

2 FreeBSD Branching

The FreeBSD development model strikes a balance be-
tween the needs of the developers and the needs of its
users. Developers prefer to have one set of sources that
they can change arbitrarily and not have to worry about
the consequences. Users prefer to have a stable system
that is compatible with the prior systems. These two
desires are incompatible and can cause friction between
developers and users.

FreeBSD answers the need of both groups by providing
two versions of its code. The project maintains a main
line for its developers, called “current.” This branch con-
tains all the latest code, but all that code might not be
ready for end users. All changes to FreeBSD are re-
quired to be first committed to the current branch. The
quality of the current branch varies from extremely sta-
ble to almost unusable over time. The developers try to
keep it towards the stable end of the spectrum, but mis-
takes happen.

To provide a stable system users can use, FreeBSD also
maintains a stable version of the OS. Every few years
the current version is branched and that branch becomes
the new stable version. This branch is called either
“stable” or “RELENG X” where X is the major ver-
sion number for that branch. Stable branches are well
tested before they are released. Once released, only well
tested patches from the current branch are allowed to be
merged into the branch. Once a stable branch is cre-
ated, its ABI and API are never changed in an incom-
patible manner, which allows users to upgrade to newer
releases that are made from the stable branch with rel-
ative ease. Stable branches tend to have a lifetime of
about 2-6 years.

An even more stable version of FreeBSD is available
than the stable branch. For each release made off a sta-
ble branch, a release branch is also created. The only
changes that go into these release branches are secu-
rity fixes and extremely important bug fixes. These are
designed for users that wish to run a specific release,
but still have high priority bugs fixed and available in a
timely fashion. Since release branches are targeted only
at end users and have so few changes, the rest of this
paper will treat them as a release.

Figure 3 tries to show the relationships between the dif-
ferent branches over time. It shows what should have
theoretically happened if FreeBSD had a major release
every two years. The horizontal axis is time (in years).
The vertical axis is the amount of change, in arbitrary

units. Vertical arrows point to the theoretical release
points (with the release number under the arrow when
the name fits). After about three years, the branches stop
being used in favor of newer releases.

Figure 4 shows data from the FreeBSD project since
early 1997.1 There are many features of this graph that
differ from the idealized graph. The two that are most
relevant are that major branches live beyond the three
year idealized vision and that the timing of the release
branches isn’t completely regular. These points will be
important later in deciding which method fits the com-
pany’s needs the best.

The FreeBSD ports system (which is used to gener-
ate the packages that appear in FreeBSD’s releases) is
not branched at all. Instead, it supports both the cur-
rent branch, as well as the active stable branches of the
project. For each release, the tree is tagged so that it can
be reproduced in the future if necessary. These policies
are different than the main source tree. Tracking of the
ports tree is not addressed further in this paper because
its model is different and the author has fewer examples
from which to draw advise and conclusions from.

3 Branching Choices

There are a wide range of companies using FreeBSD in
their products today. On the simplest end, companies
load FreeBSD onto boxes that they ship. On the most
complex end, companies modify FreeBSD extensively
to make it fit their needs. Over the years four different
approaches to tracking FreeBSD have evolved.

The simplest method involves using the stock FreeBSD
releases unmodified. Companies doing this grab
FreeBSD at its release points and make no changes to
the software and just configure th system and install the
packages that their customers need. Typically no sources
are tracked and only binary packages from FreeBSD’s
web pages are used.

The next simplest method involves grabbing a release
of FreeBSD and using that as a basis for their product.
FreeBSD is effectively forked at this point as the com-
pany makes whatever modifications are necessary for
their product. No thought is given to upgrades or con-
tributing bug fixes back into the community.

1The author used fairly simple scripts to extract this data from the
commit logs, whose format changed in 1997. Some flaws exist in the
data, but they do not affect the shape of the graph.

28

Companies often setup repositories of FreeBSD stable
branches. In this model, the tip of a stable branch (or
the latest release point) is imported into some SCM. The
company will then make fixes and improvements to its
private branch. The company will import newer versions
of FreeBSD on this stable branch from time to time. Bet-
ter run companies will try to contribute their fixes back
into FreeBSD to simplify their upgrade path.

The most complicated method involves mirroring the
FreeBSD development process. The company will im-
port the latest version of the FreeBSD development
branch. They will setup automated scripts for pulling
in newer versions. They will make their changes to
FreeBSD in this mainline of development. Rather than
using FreeBSD’s stable branches, the company will de-
cide when and where to branch its version. Once
branched, it will control what fixes are merged into its
branch.

3.1 Stock FreeBSD

The most widespread use of FreeBSD involves this
method. In this method, the company grabs the binaries
from a FreeBSD web site or commercial vendor and uses
them as built. They layer packages on top of FreeBSD,
typically a mix of stock packages from the release and
their own additional scripts or programs. The focus of
these companies is to have a system that they can deploy
and use for a particular purpose.

Customization of the system is typically tracked in some
kind of source code management (SCM) system. These
customizations include the /etc/rc.conf file (which
controls most of the global settings for the system), as
well as configuration files and other data used by the
system. Some of these companies will also compile cus-
tomized kernel configurations. These files can typically
be tracked in any SCM as the demands on the SCM are
modest.

These companies typically upgrade only when they need
to do so. Once they find a stable version they stick with
it until they need something from a newer version. This
could be support for newer hardware (drivers or archi-
tectures), or application level features such as threading
support. Often times they will track newer security re-
leases with services such as FreeBSD update and/or por-
tupgrade in package mode.

FreeBSD meets the needs of these companies fairly well.
They don’t require additional features or bug fixes not

in the current releases. They don’t need to optimize
FreeBSD for any given platform beyond what the stan-
dard system tunables provide for them. The main ad-
vantage for these companies is that FreeBSD is a drop
in solution. There’s very little overhead necessary to get
their machines and applications running and FreeBSD’s
standard install tools can be used to create images for
their products (if they even need separate images at all).
Some of these companies participate in the community
and contribute to the community in many ways. Some
of these companies do not. The choice is up to the indi-
vidual company and its needs, sensitivities and desires.

3.2 Grab and Go

Another easy way to use FreeBSD sources is the grab
and go method. In this method, the companies grab
FreeBSD at some version and then never upgrade
FreeBSD. No attempts to track FreeBSD or pull bug
fixes in from FreeBSD are made. The company grabs the
source and starts hacking. They layer in their own build
and packaging system often times. Sometimes they port
to a new architecture. FreeBSD typically is the base for a
more extensive application of appliance which the com-
pany has total control over.

There are a few advantages to this method. The company
can concentrate on making their product work without
the distractions introduced when software versions are
rolled. The company manages its risk by doing ev-
erything themselves. The company can keep any in-
formation about what they are doing from being in-
ferred by competitors looking at their bug submissions to
FreeBSD. The company’s employees are not distracted
by interactions with the FreeBSD community. Without
these distractions, it is believed that this method allows
a company to bring its product to market more quickly.

However, there are many disadvantages to this method.
The biggest problem is that companies using this method
often find it difficult to get support for the community.
Most of the active members in the community have
moved on to newer versions of the software, so are un-
able to help out with problems in older versions. Many
of the bug fixes in newer versions of the software are dif-
ficult to back port because they depend on other changes
to the software that aren’t present in the older versions
of the software. Often times, interaction with the com-
munity on problems for recent releases of the software
can save tremendous amounts of time for the company’s
employees because they can leverage the knowledge of
others who have had similar problems.

29

Companies often times think they are in total control of
the hardware platform, but in reality this is a mistaken
assumption. Hardware platforms are made of up chips
that one buys from manufacturers. These chips go ob-
solete at an alarming rate sometimes, forcing changes
to the underlying hardware to even be able to continue
to build it. These new chips often times require new
changes to the software. Just as often, others in the com-
munity have used the newer parts and have migrated the
necessary changes into FreeBSD. So often times com-
panies that go down this path are forced to redo work
that has already been done in the community when their
supplies tell them that they will no longer be able to give
them a certain chip, and no replacements from other ven-
dors exist.

Some companies have managed to start out with this
method and later transition to one of the other methods
described in this paper. One is even rumored to have
recently completed the jump from FreeBSD 2.1.6 (re-
leased in 1996) to FreeBSD 6.2 and are now using the
stable branch tracking method described below. Other
times, the outcome isn’t so good and the product is mi-
grated to another system, or the product is killed.

3.3 Stable Branch Tracking

One nice feature of FreeBSD’s stable branches is their
stability. One can typically count on them to build and
not have critical problems. The stable branch tracking
strategy takes advantage of this feature.

The first major release on a branch is imported into
a private SCM for the company to use. The sources
are imported using the ’vendor branch’ facility of the
SCM. This facility allows one to keep a pristine copy
of the sources from FreeBSD separate from the mod-
ified sources for the company. This separation allows
developers to produce patches between the two. These
patches can be used to determine which changes should
be contributed back to the FreeBSD tree. In addition,
by importing into a vendor branch and merging into
the company’s private branch, the company can upgrade
versions of FreeBSD at any time. They can pull either
a whole new FreeBSD tree, or individual files that have
the fixes they need. The company can choose when to
roll forward the basis of their tree, and the branching
features of most SCMs make this procedure relatively
easy. As new stable branches of FreeBSD become avail-
able, this process can be repeated for them in a separate
module or directory in the SCM.

The big advantage to this approach is the underlying na-
ture of the stable branch itself. The FreeBSD project
has policies and practices that ensure that the branch
will be stable, especially near releases off of that branch.
The ability to “cherry pick” fixes from newer versions of
FreeBSD without affecting the rest of the branch helps
to mitigate risks associated with upgrading. In addition,
by using the vendor branch feature, these changes will
not interfere with future imports of a more complete sys-
tem when it is appropriate to do so. Since the ABI and
API are also frozen for the entire branch, one can grab
fixes and changes from newer versions without worrying
about breaking applications under development within
the company. The isolation of major releases into sepa-
rate modules in the SCM allows a company that has sev-
eral products built on FreeBSD to selectively upgrade
them to newer versions as market conditions warrant.

There are a few disadvantages for this approach. First, to
fully leverage the FreeBSD community, it is desirable to
push back bug fixes to the community in a timely fash-
ion. When this isn’t done, as is often the case when dead-
lines are tight, the chore up upgrading increases because
one must bring forward all of the changes to the system.
Second, if the company makes extensive changes that
aren’t merged back into FreeBSD and want to migrate
to the next major version, they will need to redo their
changes after the next major branch is created. If they
are in an area of FreeBSD that has changed between the
two branches, this can take quite a bit of time and effort.

�

COMPANY 6� � �

RELENG 6�
6.0

�
6.1

�
6.2

Figure 1: Code Flow between FreeBSD RELENG 6 and
Company’s Version

Figure 1 shows this graphically. This figure shows an
idealized flow of patches into the company tree and back
to FreeBSD. It also neglects to picture the required trip
through FreeBSD current required for all patches to be
committed to stable branches. The number of changes to
the branches are also abstracted out, unlike Figure 1 and
2 presented above. The arrows pointing to the RELENG
branch represent FreeBSD releases from that branch.
The arrows from the RELENG branch to the COM-
PANY branch represent merges of code from FreeBSD
into the company’s repository. The arrows from COM-
PANY to RELENG represent patches that have success-
fully been contributed back into FreeBSD and have been
merged into FreeBSD’s RELENG tree.

30

3.4 Own Branching

One way to keep current in FreeBSD is to track
FreeBSD’s main development branched called “cur-
rent.” Many developers do this in the FreeBSD per-
force tree and it works well for them. This method fol-
lows that practice, but also adds stable branches, akin to
FreeBSD’s stable branches in concept, but not tracking
any specific FreeBSD release.

The company would import FreeBSD’s current code
as its starting point for its FreeBSD development ef-
forts. They would start making changes to their current
branch. In addition, source code pulls from FreeBSD’s
current branch would be frequent to keep the company’s
current branch close to FreeBSD’s current branch. Just
after these pulls, the company’s current branch would
be exactly FreeBSD’s current branch with only the com-
pany’s changes layered on. The company would then
merge the relevant change from its current tree into
FreeBSD’s current tree by working with the FreeBSD
community to produce acceptable patches.

The company would also emulate FreeBSD’s branching
practices. When the tree is in a good state to branch, pos-
sibly driven by delivery schedules for its end products,
the company would branch its own stable branch from
their current branch. They would merge bug fixes and
new features from their current branch into this stable
branch and build products from this stable branch.

The main advantage of this approach is that it is eas-
ier to keep current with FreeBSD than the stable branch
tracking approach. To generate patches, a simple diff(3)
between the FreeBSD sources and the company sources
will generate the patches. As patches are merged with
FreeBSD, the next pull will automatically include those
changes and the delta between the company’s sources
and FreeBSD’s will drop. By controlling the branch-
ing times, there’s no need to wait for FreeBSD to cre-
ate new a stable branch, so the company can drive re-
leased schedules more easily than companies tracking
stable branches.

The main disadvantage of this approach is that the
company loses the work done by the FreeBSD com-
munity to keep its stable branches stable and useful.
Since there is no connection between the company’s
stable tree and FreeBSD’s stable tree, improvements to
FreeBSD’s stable branch aren’t automatically reflected
in the company’s stable branch. An engineer will need
to watch changes going into either the current branch
from FreeBSD, or into FreeBSD’s stable tree and man-

ually pull them into their own stable branch. Typically,
there are on the order of 100-200 commits to a FreeBSD
stable branch a month, so this load can be quite large. In
addition, except around the time a new branch is cut in
FreeBSD, FreeBSD’s current branch may have periods
of instability and it can be quite difficult to know when a
good time to branch might be as many of the stability or
quality problems that are in FreeBSD’s current branch
often lay undiscovered for months or years because it
doesn’t get the intensity of testing that a FreeBSD stable
branch receives.

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
���

FreeBSD Current

Company Current

Company Stable

Figure 2: Relationship between FreeBSD current and
company branches

Figure 2 shows this graphically. This figure shows an
idealized flow of patches into the company tree and
back to FreeBSD. The two parallel current branches
are shown diagonally, with the company’s custom sta-
ble branch shown horizontally, much like Figures 1 and
2 presented above. No FreeBSD release points are in-
cluded, since they are largely irrelevant to the method.
The exact delta between the two current branches is also
abstracted out, as this will ebb and flow over time and
needlessly complicates the graph. The arrows represent
changes being merged from one branch to another, ei-
ther between the two current branches, or from the com-
pany’s current branch to its stable branch.

4 Acknowledgments

I would like to thank the crew at Timing Solutions: Ben
Mesander, John Hein, Patrick Schweiger, Steve Passe,
Marc Butler, Matthew Phillips, and Barb Dean for their
insight and implementation of the ’Stable Branch Track-
ing’ method described in this paper. We deployed it
across 4 major versions of FreeBSD.

I would like to thank Julian Elischer for the many con-
versations that we have had about development method.
He provided much of the input into the ’Own Branching’
section.

31

 0

 20000

 40000

 60000

 80000

 100000

 1998 2000 2002 2004 2006 2008

Idealized 2 year release cycle

RELENG_3

RELENG_4

RELENG_5

RELENG_6

RELENG_7

HEAD

3.0 3.5 End of life

4.0 4.5 End of life

5.0 5.5 End of life

6.0 6.5 End of life

7.0

Figure 3: Idealized branching model

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1998 2000 2002 2004 2006 2008

Cumulative Commits For FreeBSD Branches

RELENG_3

RELENG_4

RELENG_5

RELENG_6

RELENG_7
HEAD

3.0
3.2 3.4 3.5.1 < 1 commit/yr< 50 commit/yr

4.0
4.2

4.4
4.6 4.7 4.8 4.9 4.10 4.11 < 50 commit/yr

5.0Perforce
adoption

5.1

5.2 5.3 5.4 5.5 < 100 commit/yr

6.0 6.1 6.2 6.3

7.0

Figure 4: Actual FreeBSD branching history

32

